Presentation, Design and Application of a New Parallel Frame Synchronization Scheme

2013 ◽  
Vol 677 ◽  
pp. 455-459
Author(s):  
Bao Tang Shan

To solve the problems of frame sync words gotten unstably and short frame synchronization state decision time, a new parallel frame synchronization scheme is presented. The proposed method improves the robustness and state decision performance of the frame synchronization system. The method is implemented and verified in a high-speed satellite communication system. Based on that practical application, a multi-channel parallel frame synchronization design method is given for even higher speed data communication systems.

2011 ◽  
Vol 128-129 ◽  
pp. 956-960
Author(s):  
Bao Tang Shan ◽  
Yu Sheng Wang

To save resources and improve speed of the frame synchronization system, one resources-saving, high speed and robust hamming distance generator design method, i.e., bit-integrated full stream line wallace tree method, is presented. By contrast studies with bit-extended wallace tree method, whose performance is better than the others’ in several documents, our method not only saves resources obviously, but also can work on higher data rate. Bit-integrated full stream line wallace tree method is implemented and simulated on FPGA. Finally, it is used in a high speed frame synchronization circuit of a satellite communication system.


Research in millimeter-wave dielectric waveguides is recently experiencing high interest in efficient data communication. Generally, channel interconnect remains a challenge for high- speed links design in satellite communication. This paper presents an analysis of Polytetrafluoroethylene (PTFE) interconnect at Ku band owing to its low-cost and efficient throughput. The effect of varying PTFE properties was examined based on the wavelength, propagation constant and attenuation, in other to advise on coating and energy escape outside the Polymer Microwave Fiber (PMF).


Author(s):  
Teodor Narytnik ◽  
Vladimir Saiko

The technical aspects of the main promising projects in the segments of medium and low-orbit satellite communication systems are considered, as well as the project of the domestic low-orbit information and telecommunications system using the terahertz range, which is based on the use of satellite platforms of the micro- and nanosatellite class and the distribution of functional blocks of complex satellite payloads more high-end on multiple functionally related satellites. The proposed system of low-orbit satellite communications represents the groupings of low-orbit spacecraft (LEO-system) with the architecture of a "distributed satellite", which include the groupings of the root (leading) satellites and satellite repeaters (slaves). Root satellites are interconnected in a ring network by high-speed links between the satellites. The geometric size of the “distributed satellite” is the area around the root satellite with a radius of about 1 km. The combination of beams, which are formed by the repeater satellites, make up the service area of the LEO system. The requirements for the integrated service area of the LEO system (geographical service area) determine the requirements for the number of distributed satellites in the system as a whole. In the proposed system to reduce mutual interference between the grouping of the root (leading) satellites and repeater satellites (slaves) and, accordingly, minimizing distortions of the information signal when implementing inter-satellite communication, this line (radio channel) was created in an unlicensed frequency (e.g., in the terahertz 140 GHz) range. In addition, it additionally allows you to minimize the size of the antennas of such a broadband channel and simplify the operation of these satellite systems.


Author(s):  
Ю.Г. Пастернак ◽  
В.А. Пендюрин ◽  
К.С. Сафонов

Решение задачи связи в Арктике, а также в тундре, в тайге, в лесу, в море, на полях возможно только с использованием мобильных систем спутниковой связи. ФГУП «Космическая связь» (г. Москва) располагает группировкой спутников, которая постоянно расширяется. Для надежной связи в Арктике и в северных широтах, помимо геостационарных спутников, запущены спутники, движущиеся по высокоорбитальным траекториям. Для переключения со спутника на спутник, входящий в зону видимости абонента, необходимо использовать антенные решетки. Проблема заключается в том, что в настоящее время отсутствуют мобильные терминалы высокоскоростной спутниковой связи, а стоимость зарубежных аналогов препятствует широкому их использованию (достигает 50 тысяч долларов). Обычно радиолокационная связь (РЛС) с фазированной антенной решеткой используется для наблюдения за тысячами угловых точек, для отслеживания сотни целей. Такие требования могут быть выполнены только путем сканирования луча в пространстве в течение микросекунды. Ясно, что необходимо электронное управление лучом, поскольку механически вращать антенну не представляется возможным. Лишь некоторая часть вышеуказанных проблем будет затрагиваться в этой статье, ниже будут представлены электронная модель антенной решетки и её математическая модель The solution of the communication problem in the Arctic, as well as in the tundra, in the taiga, in the forest, in the sea, in the fields is possible only with the use of mobile satellite communication systems. FSUE "Space Communications" (Moscow) has a constantly expanding group of satellites. For reliable communication in the Arctic and Northern latitudes, in addition to geostationary satellites, satellites moving along high-orbit trajectories were launched. To switch from one satellite to the other included in the subscriber's visibility area, it is necessary to use antenna arrays. The problem is that currently there are no mobile terminals for high-speed satellite communication, and the cost of foreign analogues prevents their widespread use (up to 50 thousand dollars). Typically, a phased array radar is used to track thousands of corner points to track hundreds of targets. Such requirements can only be met by scanning the beam in space for a microsecond. It is clear, that electronic beam control is necessary since it is not possible to mechanically rotate the antenna. Only some of the above problems will be touched upon in this article. An electronic model of the antenna array and its mathematical model is presented


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2612 ◽  
Author(s):  
Jacopo Iannacci ◽  
Giuseppe Resta ◽  
Alvise Bagolini ◽  
Flavio Giacomozzi ◽  
Elena Bochkova ◽  
...  

RF-MEMS, i.e., Micro-Electro-Mechanical Systems (MEMS) for Radio Frequency (RF) passive components, exhibit interesting characteristics for the upcoming 5G and Internet of Things (IoT) scenarios, in which reconfigurable broadband and frequency-agile devices, like high-order switching units, tunable filters, multi-state attenuators, and phase shifters will be necessary to enable mm-Wave services, small cells, and advanced beamforming. In particular, satellite communication systems providing high-speed Internet connectivity utilize the K and Ka bands, which offer larger bandwidth compared to lower frequencies. This paper focuses on two design concepts of multi-state phase shifter designed and manufactured in RF-MEMS technology. The networks feature 4 switchable stages (16 states) and are developed for the K and Ka bands. The proposed phase shifters are realized in a surface micromachining RF-MEMS technology and the experimentally measured parameters are compared with Finite Element Method (FEM) multi-physical electromechanical and RF simulations. The simulated phase shifts at both the operating bands fit well the measured value, despite the measured losses (S21) are larger than 5–7 dB if compared to simulations. However, such a non-ideality has a technological motivation that is explained in the paper and that will be fixed in the manufacturing of future devices.


1990 ◽  
Vol 01 (03n04) ◽  
pp. 223-243 ◽  
Author(s):  
R.G. SWARTZ ◽  
Y. OTA

Electronics for burst mode data communication over an optical data link will contribute to wider acceptance of photonic technology. This paper describes the concepts and difficulties inherent in burst mode optical communication systems, and proposes a new solution employing an ultra-high speed, high accuracy peak detector. Sensitivity penalties associated with this technique are reviewed. The method was implemented in an optical receiver with dc to 500 Mb/s operation, and at 200 Mb/s, demonstrates an isolated pulse sensitivity of −29.5 dBm, and pulse width distortion less than lns. An example application, the Multiple channel Optical Data LINK (MODLINK), is described: a fully dc-coupled, 12 parallel channel digital data link system designed for high speed optical fiber communication at bit rates ranging from dc to 200 Mb/s per channel, applicable at distances of centimeters to over 3 km.


2021 ◽  
Vol 1 (1) ◽  
pp. 29-34
Author(s):  
Nedžad Branković ◽  
Aida Kalem ◽  
Adisa Medić

Development of high-speed railways set up challenges for new communication technologies. With the increase in speed, new requirements for communication systems have emerged that HSR requires greater reliability, capacity and shorter response time for efficient and safe operations. Mobile communication systems are crucial for the competitiveness of the railway industry and therefore have become one of the priorities addressed by the participants in the railway system to take advantage of technological opportunities to improve operational processes and the quality of provided transport services. The European Rail Traffic Management System (ERTMS) uses the Global System for Mobile Communications for Railways (GSM-R) for voice and data communication to communicate between trains and control centers. The International Railway Union is exploring new ways of communicating for high-speed railways because as speed increases this system becomes unreliable in information transmission. This paperwork presents an analysis of the evolution of communications on European railways since the usage of GSM-R. In addition, an overview of the various alternative solutions proposed during the time (LTE-R, Future Railway Mobile Communication System) as possible successors to GSM-R technology is given.


Author(s):  
Otto Strobel ◽  
Daniel Seibl ◽  
Jan Lubkoll

The idea of this chapter is to give an overview on optical communication systems. The most important devices for fiber-optic transmission systems are presented, and their properties discussed. In particular, we consider such systems working with those basic components which are necessary to explain the principle of operation. Among them is the optical transmitter, consisting of a light source, typically a low speed LED or a high speed driven laser diode. Furthermore, the optical receiver has to be mentioned; it consists of a photodiode and a low noise, high bit rate, front-end amplifier. Yet, in the focus of the considerations, you will find the optical fiber as the dominant element in optical communication systems. Different fiber types are presented, and their properties explained. The joint action of these three basic components can lead to fiber-optic systems, mainly applied to data communication. The systems can operate as transmission links with bit rates up to 40 Gbit/s. But communication systems are also used for recent application areas in the MBit/s region, e.g. in aviation, automobile, and maritime industry. Therefore—besides pure glass fibers—polymer optical fibers (POF) and polymer-cladded silica (PCS) fibers have to be taken into account. Moreover, even different physical layers like optical wireless and visible light communication can be a solution.


Sign in / Sign up

Export Citation Format

Share Document