scholarly journals Preparation and characterization of bio-based activated carbon from fish scales

BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 614-621
Author(s):  
Qingsong Ji ◽  
Haichao Li ◽  
Jingjing Zhang

The object of this study was to prepare activated carbons containing nitrogenous functional groups by a chemical method from nitrogen-containing raw materials. Fish (Ctenopharyngodon idellus) scales were impregnated with phosphoric acid (H3PO4) and activated at varied temperatures. The adsorption ability, structural characteristics, surface chemistry, and morphology of the activated carbons were characterized by methylene blue and iodine values, nitrogen adsorption, the Boehm method, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The total alkaline groups content of the activated carbon produced from fish scales was 0.4330 mmol/g, the total acidic groups was 1.68 mmol/g, the Brunauer–Emmett–Teller (BET) surface area was 501 cm2/g, and the total pore volume was 0.284 cm3/g. The average pore diameter was 1.94 nm under an activation temperature of 550 °C, an activation time of 1 h, and an impregnation ratio of 2. As a result of this study, nitrogenous functional groups that contained acid-base amphoteric adsorbent were produced.

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 257
Author(s):  
Jie Ren ◽  
Nanwei Chen ◽  
Li Wan ◽  
Guojian Li ◽  
Tao Chen ◽  
...  

In this study, a new method for economical utilization of coffee grounds was developed and tested. The resulting materials were characterized by proximate and elemental analyses, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and N2 adsorption–desorption at 77 K. The experimental data show bio-oil yields reaching 42.3%. The optimal activated carbon was obtained under vacuum pyrolysis self-activation at an operating temperature of 450 °C, an activation temperature of 600 °C, an activation time of 30 min, and an impregnation ratio with phosphoric acid of 150 wt.%. Under these conditions, the yield of activated carbon reached 27.4% with a BET surface area of 1420 m2·g−1, an average pore size of 2.1 nm, a total pore volume of 0.747 cm3·g−1, and a t-Plot micropore volume of 0.428 cm3·g−1. In addition, the surface of activated carbon looked relatively rough, containing mesopores and micropores with large amounts of corrosion pits.


2014 ◽  
Vol 1053 ◽  
pp. 303-310 ◽  
Author(s):  
Mian Wu Meng ◽  
Cong Liang Qi ◽  
Qing Ye Liu ◽  
Liang Lv ◽  
Hao Ai ◽  
...  

A three-factor-three-level experiment was developed by the central composite design (CCD) and Response surface methodology to discuss the effects of concentration of K2CO3, activation temperature and time on the adsorption capacity of the activated carbon (AC) derived from the rice husk and to identify the key preparation parameters. The performance of the AC was characterized by nitrogen adsorption isotherm as Brunauer–Emmett–Teller (BET) and scanning electron microscope (SEM), respectively. The optimal parameters were obtained: Rice husk was soaked in K2CO3 solution (2.32 mol/L) with an impregnation ratio (rice husk: K2CO3=1:3) (wt. %), activated at 1239 K for 0.48 h. The results showed that iodine adsorption capacity of the AC was 1268.52 mg/g, the error between the models predicted (1356.98 mg/g) was only 6.2%. The AC has a large apparent surface area (SBET = 1312 m2/g), total pore volume (0.78 cm3/g) and average pore diameter (11.92 Å).


2009 ◽  
Vol 59 (12) ◽  
pp. 2387-2394 ◽  
Author(s):  
X. Wang ◽  
N. Zhu ◽  
J. Xu ◽  
B. Yin

An improved method for preparing activated carbons from wet waste activated sludge (WAS) by direct chemical activation was studied in this paper. The effects of processing parameters on iodine adsorption capacity of the product were investigated. Results show that sludge-based activated carbon prepared with KOH had a larger iodine value than those activated with ZnCl2 and KCl. The maximum iodine value was observed at the KOH concentration of 0.50 M. Increasing the impregnation time from 10 to 20 h resulted in a 20% increase in the iodine value. The highest iodine value was obtained at the activation temperature of 600°C and holding time of 1 h. Sludge water content had insignificant effects on the iodine value of products. Raw WAS with a water content of 93.2% can be converted into an activated carbon with a high specific surface area of 737.6 m2 g−1 and iodine value of 864.8 mgg−1 under optimum experimental conditions. Other physical properties such as total pore volume, micropore volume and mean pore diameter of the product were also reported and compared with those of commercial activated carbon.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Mimgjie Ma ◽  
Chao Zhang ◽  
Guangxu Huang ◽  
Baolin Xing ◽  
Yuling Duan ◽  
...  

Polyacrylonitrile (PAN) carbon nanostructure microspheres (CNM) with the average particle size of 200 nm were prepared in the range of 500 to 800°C. The precursors of CNM were obtained through soap-free emulsion polymerization followed by freeze drying, oxidative stabilization, and half-carbonization. KOH was employed as the activation agent of the precursor material, and the ratio between KOH and the precursor was selected as 2 : 1. The element content, pore structure, nitrogen-containing functional groups, and microstructure characterization were characterized via elemental analysis, N2adsorption at low temperature, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), and the electrochemical properties were examined as well. The results revealed that the CNM displayed specific surface area as high as 2134 m2/g and the total pore volume could reach 2.01 cm3/g when the activation temperature was 700°C. Furthermore, its specific capacitance in 3 M KOH and 1 M organic electrolyte could reach 311 F/g and 179 F/g, respectively. And, also, abundant functional groups of N-5 and N-6 were rich in the surface of the material, which could cause Faraday reaction and got the increasing specific capacitance via improvement of the wettability of the electrode material.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Azrina Aziz ◽  
Mohamad Nasran Nasehir Khan ◽  
Mohamad Firdaus Mohamad Yusop ◽  
Erniza Mohd Johan Jaya ◽  
Muhammad Azan Tamar Jaya ◽  
...  

This research aims to optimize preparation conditions of coconut-shell-based activated carbon (CSAC) and to evaluate its adsorption performance in removing POP of dichlorodiphenyltrichloroethane (DDT). The CSAC was prepared by activating the coconut shell via single-stage microwave heating under carbon dioxide, CO2 flow. The total pore volume, BET surface area, and average pore diameter of CSAC were 0.420 cm3/g, 625.61 m2/g, and 4.55 nm, respectively. The surface of CSAC was negatively charged shown by the zeta potential study. Response surface methodology (RSM) revealed that the optimum preparation conditions in preparing CSAC were 502 W and 6 min for radiation power and radiation time, respectively, which corresponded to 84.83% of DDT removal and 37.91% of CSAC’s yield. Adsorption uptakes of DDT were found to increase with an increase in their initial concentration. Isotherm study revealed that DDT-CSAC adsorption system was best described by the Langmuir model with monolayer adsorption capacity, Qm of 14.51 mg/g. The kinetic study confirmed that the pseudo-second-order model fitted well with this adsorption system. In regeneration studies, the adsorption efficiency had slightly dropped from 100% to 83% after 5 cycles. CSAC was found to be economically feasible for commercialization owing to its low production cost and high adsorption capacity.


2019 ◽  
Vol 2 (3) ◽  
pp. 1205-1209
Author(s):  
Hasan Sayğılı

The influence of carbonization temperature (CT) on pore properties of the prepared activated carbon using lentil processing waste product (LWP) impregnated with potassium carbonate was studied. Activated carbons (ACs) were obtained by impregnation with 3:1 ratio (w/w) K2CO3/LWP under different carbonization temperatures at 600, 700, 800 and 900 oC for 1h. Activation at low temperature represented that micropores were developed first and then mesoporosity developed, enhanced up to 800 oC and then started to decrease due to possible shrinking of pores. The optimum temperature for LWP was found to be around 800 oC on the basis of total pore volume and the Brunauer-Emmett-Teller (BET) surface area. The optimum LWPAC sample was found with a CT of 800 oC, which gives the highest BET surface area and pore volume of 1875 m2/g and 0.995 cm3/g, respectively.


2019 ◽  
Vol 62 (6) ◽  
pp. 1435-1445 ◽  
Author(s):  
Saravanan Ramiah Shanmugam ◽  
Sushil Adhikari ◽  
Hyungseok Nam ◽  
Vivek Patil

HighlightsGlyphosate sorption using bio-based adsorbents was investigated in this study.Biochars showed poor sorption of glyphosate in comparison to the activated carbons.Total pore volume of bio-based adsorbents played a key role in sorption of glyphosate.Abstract. This study examined the glyphosate sorption ability of different bio-based materials, including biochars and activated carbons synthesized from Douglas fir, kraft lignin, and mixed wood pellets. All the biochars showed poor sorption of glyphosate in comparison to the activated carbons derived from biochars and the commercial powdered activated carbon (PAC) investigated in this study. All the biochar-derived activated carbons produced in the laboratory showed comparable glyphosate sorption in comparison to PAC. The activated carbons synthesized from Douglas fir biomass showed the highest glyphosate sorption among the activated carbons investigated. Langmuir and Freundlich isotherms were used to describe the adsorption kinetics of glyphosate onto activated carbons. Adsorption capacity showed better correlation (R2 = 0.989) with the total pore volume in comparison to the Brunauer-Emmett-Teller (BET) surface area and microporosity. The results of batch desorption tests indicated that the biochar-derived activated carbons and PAC showed >60% glyphosate retention. The results of this study indicate that activated carbons derived from biochars produced with thermochemical conversion processes could effectively sorb herbicide such as glyphosate similarly to commercial activated carbon and could be used either as a replacement for PAC in water treatment plants or for on-site treatment of agricultural runoff water. Keywords: Adsorption, Desorption, Herbicides, Kraft lignin, Model isotherms, Pore volume.


2018 ◽  
Vol 6 (1) ◽  
pp. 46
Author(s):  
Nkwaju Yanou Rachel ◽  
Baçaoui Abdelaziz ◽  
Ndi Julius Nsami ◽  
Kouotou Daouda ◽  
Yaacoubi Abdelrani ◽  
...  

AgNO3- activated carbon composite based palm kernel shell was prepared by hydrothermal carbonization. The concentration of AgNO3, activation temperature and impregnation time were investigated on five responses (iodine number, methylene blue number, BET surface area, micropore volume and total pore volume). The most influential parameters of the preparation process were optimized using the Doehlert optimal design. From the ANOVA, the following optimal conditions of preparation were retained: 0.068 mol/L, 210°C and 3.7 h for AgNO3 concentration, activation temperature and impregnation time respectively. The activated carbon (AC) and the composite (AC-AgNO3) were characterized using Fourier Transform infrared spectroscopy, X-Ray diffraction, Scanning Electron Microscopy coupled to Energy Dispersive X-ray spectroscopy and measurements of the surface area. The XRD pattern and SEM-EDX clearly confirmed the presence of silver in the composite. The experimental parameters of AC- AgNO3 composite were as followed: 708.44 mg/g; 293.09 mg/g; 713.0 m2/g; 0.49 cm3/g and 0.76 cm3/g, for iodine number, methylene blue number, BET surface area, micropore volume and total pore volume of AC- AgNO3 respectively. The antibacterial test carried on Escherichia Coli showed that AC-AgNO3 composite has a high-improved antibacterial property of 99.99% fixation with a dosage of 1500 ppm for 5 hours of contact time.


2013 ◽  
Vol 701 ◽  
pp. 408-411
Author(s):  
Norlia Mohamad Ibrahim ◽  
Siti Fatimah Zahra Mohd Sarif ◽  
Roshazita Che Amat ◽  
Shamshinar Salehuddin ◽  
Nur Liza Rahim

Activated carbons were prepared from rambutan seed with impregnation of zinc chloride as dehydrating agent. In order to find its characteristics, different zinc chloride to rambutan seed ratio (0.5 and 2) and activation temperature (450 and 650 °C) was employed. The carbonization occurred in a tube furnace with flow of nitrogen gas at 0.5 L/min. The results showed that at higher impregnation ratio and carbonization temperature produced a wider BET surface area of activated carbon that was 9.8761 m2/g. Total pore volume also increased with increases of these two factors. However activation yield was decreased with increasing of carbonization temperature.


2013 ◽  
Vol 433-435 ◽  
pp. 2003-2007 ◽  
Author(s):  
Wei Gao ◽  
Gaungjie Zhao

The aim of this study is to investigate changes in microstructure and oxygen functional groups of liquefied wood activated carbon fibers using density functional theory, FTIR, X-ray photoelectron spectroscopy. Samples were immersed with hydrogen peroxide (H2O2) at three concentrations (15, 20, and 25 wt%), three temperatures (90, 70, and 50 °C) for three periods of time (1, 2, and 3 h). The results reveals that the pores average radius narrow, and micropores turn into mesopores or macropores with the increasing process, which brings about the surface area of treated samples decrease. Numerous oxygen functional groups are observed in the treated samples, and the ratios of oxygen and carbon increase from 3.2% before treated to 14.7% with H2O2 modification. The results confirm that the average pore radius and surface area decrease during treatment due to concentration and temperature. What is more, oxygen functional groups increase significantly with increasing treatment concentration.


Sign in / Sign up

Export Citation Format

Share Document