scholarly journals Mathematics Model of the Question of Micro-Pits Image with Direction-Uniformity Distribution and Area Scrambling Micro-Pits Image Design Methods Based on Regular Graphics Arrangement

2013 ◽  
Vol 706-708 ◽  
pp. 407-411
Author(s):  
Hong Cai Wang ◽  
Yang Wang

Mathematical model including design variables, constraint conditions and target functions is raised on the basis of problem description. Using the mathematical model, area scrambling micro-pits image design methods are presented. The methods can generate square area scrambling micro-pits image based on square-aligned-array arrangement, square area scrambling micro-pits image based on square-staggered-array arrangement, and area scrambling micro-pits image based on equilateral hexagon-array arrangement. The uniformity of the last one is the best.

2009 ◽  
Vol 626-627 ◽  
pp. 693-698
Author(s):  
Yong Yong Zhu ◽  
S.Y. Gao

Dynamic balance of the spatial engine is researched. By considering the special wobble-plate engine as the model of spatial RRSSC linkages, design variables on the engine structure are confirmed based on the configuration characters and kinetic analysis of wobble-plate engine. In order to control the vibration of the engine frame and to decrease noise caused by the spatial engine, objective function is choosed as the dimensionless combinations of the various shaking forces and moments, the restriction condition of which presents limiting the percent of shaking moment. Then the optimization design is investigated by the mathematical model for dynamic balance. By use of the optimization design method to a type of wobble-plate engine, the optimization process as an example is demonstrated, it shows that the optimized design method benefits to control vibration and noise on the engines and improve the performance practically and theoretically.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 953
Author(s):  
Khanh Toan Tran ◽  
. .

In the mathematical model with multiple input variables, the sensitivity analysis of the input variables is an important step to ensure the reliability of the mathematical model. In order to optimize the ship manoeuvring simulation, in particular the optimization of the trajectory ship, the sensitivity analysis should be performed in the mathematical model to select the group of the most sensitive hydrodynamic coefficients. In this paper, the author applied the sensitivity analysis method in mathematics model of ship manoeuvring programming in order to optimize the ship trajectory of Esso Bernicia 193000DWT tanker model.  


2020 ◽  
Vol 62 (7) ◽  
pp. 672-677 ◽  
Author(s):  
E. İ. Albak ◽  
E. Solmaz ◽  
F. Öztürk

Abstract Twist beam suspension systems are usually used in middle segment vehicles due to certain advantages. Researchers have presented many studies on both lightweight and functional twist beam design. In this paper, an optimization study is presented for enhancing the conceptual design of the twist beam by defining design variables along the twist beam as subject to vehicle handling conditions.Toe and camber angles are essential parameters that determine vehicle behavior during maneuvering. In this study, opposite wheel travel analysis is performed to represent maneuvering behavior. Therefore, while the optimization study is presented in the form of weight reduction, it is aimed to keep the toe and camber angles at certain intervals. Ant lion optimizer and mothflame optimization methods, which are population-based optimization methods, are used in the optimization phase to evaluate the performance of the new algorithms as compared with genetic algorithm in terms of robustness and correctness in the case of twist beam design. A two stage approach is introduced for presenting the optimization model and analysis. In the first stage, design space is created via the Latin hypercube method; the mathematical model is obtained via the least squares regression method. Finally, the mathematical model is solved to enhance twist beam conceptual design using recently developed population based optimization algorithms.


2012 ◽  
Vol 443-444 ◽  
pp. 169-176
Author(s):  
Hai Peng Pan ◽  
Yang Wang ◽  
Yong Ming Xia ◽  
Wei Zhang

A novel permanent magnet (PM) linear oscillatory actuator (LOA) of moving-iron and non-salient pole was presented on the basis of LOA research. The mathematical model of the LOA based on the magnetic circuit method was established, and derived the relationship between electromagnetic thrust and coil current, mover’s displacement. The thrust of LOA was simulated by the Finite Element Method (FEM). The corresponding experimental results verifies the electromagnetic thrust is direct proportional to coil current and reverse proportional to mover’s displacement during effective mover’s displacement. So the derived mathematical model based on the magnetic circuit method is correct. This conclusion provides a theoretical basis for the further calculation of thrust, the selection of control current and the design of controlling method.


2013 ◽  
Vol 273 ◽  
pp. 198-202
Author(s):  
Yu Xia Wang

In a given power P, number of teeth than u, input speed and other technical conditions and requirements, find out a set of used a economic and technical indexes reach the optimal design parameters, realize the optimization design of the reducer, This paper determined unipolar standard spur gear reducer design optimization of the design variables, and then determine the objective function, determining constraint function, so as to establish the mathematical model.


Author(s):  
Rukmono Budi Utomo

This paper describes a mathematical model of finance ratios against net income percentage in Indonesia Hardware Ace Company. This model constructed using multiple linear regression. In this paper, we used some financial ratios such as Current Ratio (CR), ROA, ROE, GPM, OPM, NPM, Payout Ratio, and Yield as ingredients to construct regression mathematics model. We use data from the Indonesia Hardware Ace company report in the year 2013 and 2014. This data available and can download any digital sources especially from Indonesia Capital Market Directory (ICMD). Data then processed using statistical software namely SPSS version 17.0 for helped us constructed a mathematical regression model. This research yields multiple regression model with value of . It means that the mathematical model very completed and useful to the application. Keyword: Finance Ratios, Net Income, Regression, ACE Hardware Indonesia


Author(s):  
Olexandr Pavlenko ◽  
Serhii Dun ◽  
Maksym Skliar

In any economy there is a need for the bulky goods transportation which cannot be divided into smaller parts. Such cargoes include building structures, elements of industrial equipment, tracked or wheeled construction and agricultural machinery, heavy armored military vehicles. In any case, tractor-semitrailer should provide fast delivery of goods with minimal fuel consumption. In order to guarantee the goods delivery, tractor-semitrailers must be able to overcome the existing roads broken grade and be capable to tow a semi-trailer in off-road conditions. These properties are especially important for military equipment transportation. The important factor that determines a tractor-semitrailer mobility is its gradeability. The purpose of this work is to improve a tractor-semitrailer mobility with tractor units manufactured at PJSC “AutoKrAZ” by increasing the tractor-semitrailer gradeability. The customer requirements for a new tractor are determined by the maximizing the grade to 18°. The analysis of the characteristics of modern tractor-semitrailers for heavy haulage has shown that the highest rate of this grade is 16.7°. The factors determining the limiting gradeability value were analyzed, based on the tractor-semitrailer with a KrAZ-6510TE tractor and a semi-trailer with a full weight of 80 t. It has been developed a mathematical model to investigate the tractor and semi-trailer axles vertical reactions distribution on the tractor-semitrailer friction performances. The mathematical model has allowed to calculate the gradeability value that the tractor-semitrailer can overcome in case of wheels and road surface friction value and the tractive force magnitude from the engine. The mathematical model adequacy was confirmed by comparing the calculations results with the data of factory tests. The analysis showed that on a dry road the KrAZ-6510TE tractor with a 80 t gross weight semitrailer is capable to climb a gradient of 14,35 ° with its coupling mass full use condition. The engine's maximum torque allows the tractor-semitrailer to overcome a gradient of 10.45° It has been determined the ways to improve the design of the KrAZ-6510TE tractor to increase its gradeability. Keywords: tractor, tractor-semitrailer vehicle mobility, tractor-semitrailer vehicle gradeability.


Author(s):  
Oleksii Timkov ◽  
Dmytro Yashchenko ◽  
Volodymyr Bosenko

The article deals with the development of a physical model of a car equipped with measuring, recording and remote control equipment for experimental study of car properties. A detailed description of the design of the physical model and of the electronic modules used is given, links to application libraries and the code of the first part of the program for remote control of the model are given. Atmega microcontroller on the Arduino Uno platform was used to manage the model and register the parameters. When moving the car on the memory card saved such parameters as speed, voltage on the motor, current on the motor, the angle of the steered wheel, acceleration along three coordinate axes are recorded. Use of more powerful microcontrollers will allow to expand the list of the registered parameters of movement of the car. It is possible to measure the forces acting on the elements of the car and other parameters. In the future, it is planned to develop a mathematical model of motion of the car and check its adequacy in conducting experimental studies on maneuverability on the physical model. In addition, it is possible to conduct studies of stability and consumption of electrical energy. The physical model allows to quickly change geometric dimensions and mass parameters. In the study of highway trains, this approach will allow to investigate the various layout schemes of highway trains in the short term. It is possible to make two-axle road trains and saddle towed trains, three-way hitched trains of different layout. The results obtained will allow us to improve not only the mathematical model, but also the experimental physical model, and move on to further study the properties of hybrid road trains with an active trailer link. This approach allows to reduce material and time costs when researching the properties of cars and road trains. Keywords: car, physical model, experiment, road trains, sensor, remote control, maneuverability, stability.


Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG


Sign in / Sign up

Export Citation Format

Share Document