Product Distribution and Sulfur Migration in Rubber Pyrolysis

2013 ◽  
Vol 712-715 ◽  
pp. 119-123
Author(s):  
Long Guo ◽  
De Min He ◽  
Jun Guan ◽  
Qiu Min Zhang

Pyrolysis of vulcanized rubber (VR) with high total sulfur was carried out in the fixed-bed reactor. The effect of heating temperature and on the formation and distrubtion of tar, gas and char and sulfide in pyrolysis products were investigated.The maximal tar yield can reach 55.79% (wt,dry), water yield 1.30% (wt,dry). With increase in temperature, sulfur in char decreases and more sulfur migrates into gases and sulfur removal varies from 66.08% to 77.39 %, and the contents of H2S, CS2and COS increase. Comparing with COS and CS2, the content of H2S is overwhelming, since sulfur radicals from crack of VR is easier for hydrogenation reaction to produce H2S. GC-FPD (Flame Photometric Detector) was used to determine the sulfides in tar. The result indicates sulfides in tar are mainly present in form of sulfides with aromatic group. When temperature grows, sulfur transfers into pyrolysis gas instead of char and total content of detected sulfides in tar rises and then declines.

2015 ◽  
Vol 659 ◽  
pp. 252-256
Author(s):  
Sudarat Chaiwatyothin ◽  
Wittawat Ratanathavorn ◽  
Tharapong Vitidsant ◽  
Prasert Reubroycharoen

Synthesis of nanoCu/ZnO catalyst for LPG production was prepared by ultrasonic spray pyrolysis (USP). Hollow spherical particles were obtained by USP technique using an aqueous solution of Cu (NO3)3.6H2O and Zn (NO3)3.3H2O with different concentration of 0.05, 0.1 and 0.5 molar under the pyrolysis temperatures of 600, 700 and 800°C. Mists of the solution were generated from the precursor solution by ultra sonic vibrators at frequency of ~1.7 MHz. The physicochemical properties of catalysts were characterized by X-ray diffraction, temperature-programmed reduction, scanning electron microscope, nitrogen adsorption-desorption, and energy dispersive X-ray spectrometer. The results showed that increasing in precursor concentration resulted in a large particle and particles size distributed in a range of 0.63-1.21 μm. Particles prepared at pyrolysis temperature 700°C exhibited homogeneous in size and shape compared to other temperature. The catalytic activity of nanoCu/ZnO-Pd-β catalysts was performed in a fixed-bed reactor for synthesizing LPG. The reaction took place at 260°C, 3.0 MPa, and the ratio of H2/CO = 2/1. All the products from the reactor were in gaseous state, and analyzed by on-line gas chromatography. The results showed that %CO conversion was high but decreased rapidly with increasing reaction time. Cu/ZnO catalyst prepared by co-precipitation gave higher %CO conversion than that prepared by ultrasonic spray pyrolysis. Moreover, hydrocarbon product distribution for Cu/ZnO catalyst produced at concentration 0.1 M 700°C by ultrasonic spray pyrolysis gave the highest LPG selectivity.


2012 ◽  
Vol 142 (11) ◽  
pp. 1382-1387 ◽  
Author(s):  
Dragomir B. Bukur ◽  
Zhendong Pan ◽  
Wenping Ma ◽  
Gary Jacobs ◽  
Burtron H. Davis

2017 ◽  
Vol 751 ◽  
pp. 512-517 ◽  
Author(s):  
Supranee Lao-Ubol ◽  
Phunthinee Somwongsa ◽  
Pracha Laoauyporn ◽  
Pasinee Panith ◽  
Siriporn Larpkiattaworn ◽  
...  

Five different types of silica catalyst (SBA-15, SBA-15-PO3H2, and three different Si/Al ratio of commercial zeolites (30, 80 and 280) were used to study the transformation of methanol to hydrocarbon (MTH). The aim of this study was to investigate the effect of pore diameter and acidity in the structure of silica catalysts on the process performances in terms of methanol conversion and hydrocarbon selectivity. The mesoporous silica catalysts were prepared by co-condensation method. The catalysts samples were characterized by GC-MS, XRD, BET, and NH3-TPD techniques. The catalytic performance of synthesized and commercial catalysts for MTH process was evaluated using a homemade fixed bed reactor at temperature (300°C). It was found that the liquid hydrocarbon product provided by zeolite catalysts is aromatic hydrocarbons-rich. High Si/Al zeolites with larger pore size lead to higher selectivity and yield to paraffins (C1-C7). In contrast to commercial zeolite catalyst, SBA-15 and its modification with phosphorus species showed no conversion under studied condition. These results indicate that both pore diameter and acidity influence the product distribution in methanol to hydrocarbon process.


2021 ◽  
Vol 15 ◽  
pp. 49-52
Author(s):  
Özlem Onay

Co-pyrolysis of lignite and pistachio seed (CPLPS) under nitrogen gas was performed in a Heinze retort. The effect of pyrolysis temperature on product distribution of CPLPS investigated under heating rate of 10°Cmin-1 and blending ratio of 50(wt)%. Biomass is higher yield to be pyrolyzed than lignite and addition of biomass promotes the pyrolysis of lignite. In the range of the experimental conditions investigated the yield of the product is proportional to pyrolysis temperature. On the other hand, considerable synergetic effects were observed during the co-pyrolysis in a fixed bed reactor leading to increase in oil yield. Maximum pyrolysis oil yield of 27.2% was obtained at pyrolysis temperature of 550°C. The obtained oils are characterized by GC, and elemental analysis.


2014 ◽  
Vol 16 (2-3) ◽  
pp. 209 ◽  
Author(s):  
A. Diéguez-Alonso ◽  
A. Anca-Couce ◽  
F. Behrendt

<p>Consolidated industrial application of biomass thermochemical conversion processes, such as pyrolysis and gasification, requires the development and application of control and optimization techniques. To this end, on-line process characterization, regarding mainly product distribution and composition under similar conditions as the ones encountered in industrial applications is needed. In the present study, slow pyrolysis and updraft gasification of thermally thick particles in a technical scale fixed-bed reactor are carried out under several process conditions. Different raw materials are used: pine wood chips, beech-wood spheres and cellulose. In pyrolysis, the increasing influence of transport phenomena in the conversion process due to the use of a technical-scale reactor and thermally thick wood particles is analysed through the temperature distribution inside the bed during the process together with the char properties characterization taken from four different positions inside the bed. The influence of process conditions, such as the N<sub>2</sub> flow rate, on the products composition and distribution is also analysed. In gasification, the influence of the air to fuel ratio on the product gas composition is characterized, as well as the qualitative evolution of polycyclic aromatic hydrocarbons (PAH) representative species in the volatiles vapours by applying laser-induced fluorescence (LIF).</p>


2021 ◽  
Author(s):  
Suresh Kanuri ◽  
Satyapaul A. Singh ◽  
Santanu P. Datta ◽  
Chanchal Chakraborty ◽  
Sounak Roy ◽  
...  

Abstract The most inspiring opportunity to reduce greenhouse gas emissions is direct hydrogenation of CO2 into a commodity of products, which is also an appealing choice for generating renewable energy. CO2 hydrogenation can yield methanol which has a broad range of applications. In the present study, a thermodynamic feasibility analysis of the CO2 hydrogenation reaction is carried out using the Aspen Plus tool. CO2 hydrogenation to methanol, reverse-water-gas-shift (RWGS), and methanol decomposition reactions were considered in this analysis. The effect of different parameters such as temperature (ranging from 50 to 500°C), pressures (ranging from 1 bar to 50 bar), and CO2:H2 molar ratio (ranging from 1:3 to 1:20) on methanol yield has been investigated. The Aspen predicted data is compared with the fixed-bed reactor experimental data. High pressure and low-temperature conditions are found to be the favourable option for a higher value of methanol yield. The CO2 conversion and CH3OH selectivity are favourable when the H2/CO2 molar ratio is greater than 3. A substantial gap between the Aspen predicted equilibrium conversion of CO2 and the experimental value of CO2 conversion is observed in the study.


1986 ◽  
Vol 51 (11) ◽  
pp. 2509-2520 ◽  
Author(s):  
Darío R. Ardiles

This paper reports a study about the effect of activity distributions of a bifunctional catalyst on the conversion and product distribution in a fixed-bed reactor. Uniform as well as increasing and decreasing activity profiles of both catalytic functions are considered. The analysis is performed assuming three different reaction schemes. Results show that reactor performance is greatly affected by the use of catalysts with non-uniform activity distributions.


Catalysts ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 622 ◽  
Author(s):  
Zahraa Al-Auda ◽  
Hayder Al-Atabi ◽  
Keith Hohn

Methyl ethyl ketone (MEK) was converted to heavier ketones in one step, using a multi-functional catalyst having both aldol condensation (aldolization and dehydration) and hydrogenation properties. 15% Cu supported zirconia (ZrO2) was investigated in the catalytic gas phase reaction of MEK in a fixed bed reactor. The results showed that the main product was 5-methyl-3-heptanone (C8 ketone), with side products including 5-methyl-3-heptanol, 2-butanol, and other heavy products (C12 and up). The effects of various reaction parameters, like temperature and molar ratio of reactants (H2/MEK), on the overall product selectivity were studied. It was found that with increasing the temperature of the reaction, the selectivity to the C8 ketone increased, while selectivity to the 2-butanol decreased. Also, hydrogen pressure played a significant role in the selectivity of the products. It was observed that with increasing the H2/MEK molar ratio, the 2-butanol selectivity increased because of the hydrogenation reaction, while decreasing this ratio led to increasing the aldol condensation products. In addition, it was noted that both the conversion and selectivity to the main product increased using a low loading percentage of copper, 1% Cu–ZrO2. The highest selectivity of 5-methyl-3-heptanone reached ~64%, and was obtained at a temperature of around 180 °C and a molar ratio of H2/MEK equal to 2. Other metals (Ni, Pd, and Pt) that were supported on ZrO2 also produced 5-methyl-3-heptanone as the main product, with slight differences in selectivity, suggesting that a hydrogenation catalyst is important for producing the C8 ketone, but that the exact identity of the metal is less important.


Sign in / Sign up

Export Citation Format

Share Document