Advanced Design for The Bolted Clip-Angle Connection

2013 ◽  
Vol 716 ◽  
pp. 632-637
Author(s):  
Wan Hu Jong ◽  
Wan Kim Jae

The main focus of this study is to investigate the clip-angle connections are described the section based on ideal limit states. The connection components are designed in accordance with the 2001 AISC-LRFD Specifications and the 2005 AISC Seismic Provisions. In the suggested clip-angle connection, the structural beam can be connected to the column using six high-strength bolts. The slippage on the shear faying surface contributes to increasing energy dissipated capacity in the connection behavior. The design of the clip-angle connection should include these mechanical characteristics. Therefore, this study presents new design methodology that can be applied to bolted clip-angle connections. Besides, step-by-step procedures for design will be treated herein.

2013 ◽  
Vol 716 ◽  
pp. 626-631
Author(s):  
Wan Hu Jong ◽  
Myung Jang Hee

This paper is mainly performed to investigate T-stub connection that is described on the basis of ideal strength limit states. The determination of T-stub based on the full plastic strength of the steel beam in accordance with 2005 AISC Seismic Provisions. The T-stub connections considered herein were performed to include the T-stub component of bolted moment connection frames. Therefore, the proposed T-stub models will be evaluated by comparing the required factored bar strength. T-stub components using ten high strength bolts with wider gages are demonstrated in this design. In addition, equations for connection design will be described in this paper. Finally, new design methodology is applied to T-stub connections suggested in this study.


Author(s):  
G. F. Zhelezina ◽  
V. G. Bova ◽  
S. I. Voinov ◽  
A. Ch. Kan

The paper considers possibilities of using a hybrid fabric made of high-modulus carbon yarn brand ZhGV and high-strength aramid yarns brand Rusar-NT for polymer composites reinforcement. The results of studies of the physical and mechanical characteristics of hybrid composite material and values of the implementation of the strength and elasticity carbon fibers and aramid module for composite material are presented. 


2021 ◽  
Author(s):  
Hitoshi Moriyama ◽  
Ryo Sakura ◽  
Takashi Yamaguchi ◽  
Takai Toshikazu ◽  
Yuta Yamamoto

<p>Welded joints is adopted rather than bolted joints for megastructure’s connections because the former can carry large force. However, the former has several problems, such as quality control of welding in situ, which the latter can solve. By contrast, as the load transfer ratio of each bolt becomes uneven proportionally to the number of bolts, local slip around extreme bolts occurs before the whole slip. Extreme bolts to which a large shear force is applied will break before other bolts. For utilizing the strength of all bolts, the problem is solved by improving shear deformation capacity in faying surface with novel surface treatment. Here, the treatment concepts were explored, and the coating’s effectiveness was evaluated through friction tests. The deformation capacity can be twice or more than that of conventional treatment, and the slip coefficient doesn’t depend on contact pressure. These features have the advantage to give stable slip behaviour.</p>


2021 ◽  
Vol 2103 (1) ◽  
pp. 012095
Author(s):  
L P Myasnikova ◽  
A K Borisov ◽  
Yu M Boiko ◽  
A P Borsenko ◽  
V F Drobot’ko ◽  
...  

Abstract The ultra-high-molecular-weight polyethylene reactor powders are widely used for the actively developing solvent-free method for producing high-strength high-modulus PE filaments, which includes the compaction and sintering of a powder followed by orientational hardening. To find an appropriate regime of the technological process, it is important to know how the nanostructure changes when transforming from a powder to a precursor for hardening. Nanocrystalline lamellae are characteristics of the powder structure. For the first time, the DSC technique was used to follow changes in the thickness distribution of lamellae in ultra-high-molecular-weight polyethylene reactor powder on its way to a precursor for orientation hardening. It was found that the percentage of thick (>15 nm) and thin (10 nm) lamellae in compacted samples and those sintered at temperatures lower than the melting temperature of PE (140°C) remains nearly the same. However, significant changes in the content of lamellae of different thicknesses were observed in the samples sintered at 145°C with subsequent cooling under different conditions. The influence of the lamellae thickness distribution in precursors on the mechanical characteristics of oriented filaments was discussed.


This paper aimed to investigate the mechanical characteristics of HSC of M60 concrete adding 25% of fly ash to cement and sand and percentage variations of silica fumes 0%,5% and 10% to cement with varying sizes of 10mm,6mm,2mm and powder of granite aggregate with w/c of 0.32. Specimens are tested for compressive strength using 10cm X 10cmX10cm cubes for 7,14,28 days flexural strength was determined by using 10cmX10cmX50cm beam specimens at 28 days and 15cm diameter and 30cm height cylinder specimens at 28 days using super plasticizers of conplast 430 as a water reducing agent. In this paper the experimental set up is made to study the mechanical properties of HSC with and without coarse aggregate with varying sizes as 10mm, 6mm, 2mm and powder. Similarly, the effect of silica fume on HSC by varying its percentages as 0%, 5% and 10% in the mix studied. For all mixes 25% extra fly ash has been added for cement and sand.


2010 ◽  
Vol 16 (3) ◽  
pp. 352-362 ◽  
Author(s):  
Zdeněk Kala ◽  
Libor Puklický ◽  
Abayomi Omishore ◽  
Marcela Karmazínová ◽  
Jindřich Melcher

The presented paper deals with the stochastic analysis of the ultimate limit states of steel‐concrete building members. The load carrying capacity of steel‐concrete columns, comprising of steel profiles encased in high strength concrete, in compression is analyzed. The first part of the paper lists assumptions for the determination of the theoretical load carrying capacity of the column. Principles of elasticity and plasticity are used to determine stresses in the concrete and steel sections. Statistical characteristics of input material and geometrical imperfections are listed. Results of the theoretical analysis are then compared with results of experimental research. Statistical characteristics of obtained results of the theoretical analysis were verified using statistical characteristics obtained from experimental research. Numerical simulation LHS and Monte Carlo methods, which take into account the influences of variability of input imperfections, were employed. The influence of the utilization of the plastic reserve in the determination of the load carrying capacity of the analysed strut is shown. The influence of the initial geometric imperfections of initial strut curvature on the load carrying capacity is also presented. Santrauka Straipsnyje pateikta plienbetonio pastatu elementu didžiausiu ribiniu būkliu stochastine analize, analizuojama plienbetonio kolonu, sudarytu iš plieniniu profiliuočiu, padengtu didelio stiprio betonu, laikomoji galia gniuždant. Pirmoje straipsnio dalyje išvardytos kolonos teorines laikomosios galios nustatymo prielaidos. Tamprumo ir plastiškumo principai taikyti itempiams betono ir plieno skerspjūviuose nustatyti. Nustatytos medžiagu ir geometriniu defektu statistines charakteristikos, teorines analizes rezultatai palyginti su eksperimentiniu tyrimu rezultatais. Teorines analizes metu gautu rezultatu statistines charakteristikos patikrintos taikant iš eksperimentiniu tyrimu gautus statistinius rodiklius. Pritaikytas skaitinis modeliavimas LHS ir Monte Karlo metodais, kurie ivertina pradiniu defektu kintamumo itaka. Parodyta plastiškumo atsargos naudojimo itaka, nustatant analizuojamojo statramsčio laikomaja galia, pateikta pradinio statramsčio išlinkio pirminiu geometriniu defektu itaka laikomajai galiai.


2014 ◽  
Vol 1025-1026 ◽  
pp. 878-884
Author(s):  
Jong Wan Hu ◽  
Jun Hyuk Ahn

This paper is principally performed to survey end-plate connection are described in the next part based on ideal limit states. The determination of end-plate based on the full plastic strength of the steel beam in accordance with 2001 AISC-LRFD manual and AISC/ANSI 358-05 Specifications. The bolted connections considered herein were performed to include the end-plate component of moment connections. This study is intended to investigate economic design for end-plate connections. In addition, the proposed end-plate model is evaluated by comparing the required factored bolt strength. The end-plates using 8 high strength bolts with wider gages demonstrated this design. The equations belonging to the step-by-step design procedure are described based on complete proving of design. Finally, new design methodology is applied to end-plate connections suggested in this study.


2018 ◽  
Vol 7 (4.7) ◽  
pp. 356 ◽  
Author(s):  
Anastasia Sychovа ◽  
Larisa Svatovskaya ◽  
Dmitriy Starchukov ◽  
Vassily Gera ◽  
Maxim Sychov

This article considers scientific and practical principles of concrete surfacing. As it was found, such production can be done by impregnating the surface of high-strength concrete with silica sol, measuring the surface energy of nanoparticles introduced. A technique was introduced for calculating surface energy of sols, so was the range of energy necessary to create concrete with a shock resistant surface, determined by measurement and calculation. The content contains possible reactions resulting in new phases in the concrete top during the impregnation with silica sol. Physical and mechanical characteristics of surfaced concrete were also outlined ad considered, so were the XRD data and electron microscopy data. Various types of energy used to surface concrete until high dynamic strength were compared. This article provides evidence that surface energy of sol nanoparticles can be considered as an independent alternative source.  


2006 ◽  
Vol 946 ◽  
Author(s):  
Malik Idries Adam ◽  
Kozo Osamura

ABSTRACTTensile strain dependence of electromechanical characteristics of high-current, (Hic) and high-strength, (Hs) type Ag/Bi2223 composite tapes measured at room temperature, RT and 77K is investigated. Mechanical strength of composites revealed strain-hardening signature in Bi2223 filaments due to plastic strain above the elastic limit. Critical current, Ic maintained constant value up to the elastic limit then decreased slowly before finally dropped to about 10% at 0.19% and 0.39% strain, signaling a three-stage limitation. Microstructure observations and electromechanical response of the composites suggest that a limited longitudinal, transverse, interfacial, granular and transgranular microcracks formed during gradual imposition of strain hardening in Bi2223 filaments may be responsible for the slow reduction of Ic in the medium mechanical stage.


Sign in / Sign up

Export Citation Format

Share Document