A Simulation Analysis Research on the Material Performance of Resin Concrete

2013 ◽  
Vol 721 ◽  
pp. 135-138
Author(s):  
Bo Wang ◽  
Bin Lin ◽  
Kun Zhao

A numerical analysis method of the thermal stability of the resin concrete is proposed in this paper. A 3D aggregate accumulation model based on the predecessors theory is established and a 2D cross section is directly captured from it. In order to simplify the analysis, a kind of conversion program is developed. The thermal expansion coefficient of established model is close to previous research results. It confirms the analysis method is correct. By the results, a reliable formula is found to calculate the thermal expansion coefficient and a method to reduce the thermal expansion coefficient of resin concrete is proposed.

2018 ◽  
Vol 42 (7) ◽  
pp. 5045-5051
Author(s):  
Nhat Tri Vo ◽  
Astam K. Patra ◽  
Dukjoon Kim

A hollow doughnut shaped mesoporous silica nanoparticle filler that significantly enhances the dimensional thermal stability without sacrificing the optical properties of poly(ether sulfone) films is reported.


2016 ◽  
Vol 23 (3) ◽  
pp. 718-728 ◽  
Author(s):  
Shi Yan ◽  
Dongbai Sun ◽  
Yu Gong ◽  
Yuanyuan Tan ◽  
Xueqing Xing ◽  
...  

Silver nanoparticles were synthesized with a chemical reduction method in the presence of polyvinylpyrrolidone as stabilizing agent. The thermal stability behavior of the silver nanoparticles was studied in the temperature range from 25 to 700°C. Thermal gravimetric analysis was used to measure the weight loss of the silver nanoparticles. Scanning electron microscopy and high-resolution transmission electron microscopy were used to observe the morphology and the change in shape of the silver nanoparticles.In situtemperature-dependent small-angle X-ray scattering was used to detect the increase in particle size with temperature.In situtemperature-dependent X-ray diffraction was used to characterize the increase in nanocrystal size and the thermal expansion coefficient. The results demonstrate that sequential slow and fast Ostward ripening are the main methods of nanoparticle growth at lower temperatures (<500°C), whereas successive random and directional coalescences are the main methods of nanoparticle growth at higher temperatures (>500°C). A four-stage model can be used to describe the whole sintering process. The thermal expansion coefficient (2.8 × 10−5 K−1) of silver nanoparticles is about 30% larger than that of bulk silver. To our knowledge, the temperature-driven directional coalescence of silver nanocrystals is reported for the first time. Two possible mechanisms of directional coalescence have been proposed. This study is of importance not only in terms of its fundamental academic interest but also in terms of the thermal stability of silver nanoparticles.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 153
Author(s):  
Chuen-Lin Tien ◽  
Tsai-Wei Lin

This paper proposes a measuring apparatus and method for simultaneous determination of the thermal expansion coefficient and biaxial Young’s modulus of indium tin oxide (ITO) thin films. ITO thin films simultaneously coated on N-BK7 and S-TIM35 glass substrates were prepared by direct current (DC) magnetron sputtering deposition. The thermo-mechanical parameters of ITO thin films were investigated experimentally. Thermal stress in sputtered ITO films was evaluated by an improved Twyman–Green interferometer associated with wavelet transform at different temperatures. When the heating temperature increased from 30 °C to 100 °C, the tensile thermal stress of ITO thin films increased. The increase in substrate temperature led to the decrease of total residual stress deposited on two glass substrates. A linear relationship between the thermal stress and substrate heating temperature was found. The thermal expansion coefficient and biaxial Young’s modulus of the films were measured by the double substrate method. The results show that the out of plane thermal expansion coefficient and biaxial Young’s modulus of the ITO film were 5.81 × 10−6 °C−1 and 475 GPa.


Author(s):  
Yvonne Spack-Leigsnering ◽  
M. Greta Ruppert ◽  
Erion Gjonaj ◽  
Herbert De Gersem ◽  
Volker Hinrichsen

2020 ◽  
Vol 59 (1) ◽  
pp. 523-537
Author(s):  
Chaturaphat Tharasana ◽  
Aniruj Wongaunjai ◽  
Puwitoo Sornsanee ◽  
Vichasharn Jitprarop ◽  
Nuchnapa Tangboriboon

AbstractIn general, the main compositions of porcelain and bone china composed of 54-65%wt silica (SiO2), 23-34% wt alumina (Al2O3) and 0.2-0.7%wt calcium oxide (CaO) suitable for preparation high quality ceramic products such as soft-hard porcelain products for teeth and bones, bioceramics, IC substrate and magneto-optoelectroceramics. The quality of ceramic hand mold is depended on raw material and its properties (pH, ionic strength, solid-liquid surface tension, particle size distribution, specific surface area, porosity, density, microstructure, weight ratio between solid and water, drying time, and firing temperatures). The suitable firing conditions for porcelain and bone china hand-mold preparation were firing at 1270°C for 10 h which resulted in superior working molds for making latex films from natural and synthetic rubber. The obtained fired porcelain hand molds at 1270°C for 10 h provided good chemical durability (10%NaOH, 5%HCl and 10%wtNaCl), low thermal expansion coefficient (5.8570 × 10−6 (°C−1)), good compressive (179.40 MPa) and good flexural strength (86 MPa). While thermal expansion coefficient, compressive and flexural strength of obtained fired bone china hand molds are equal to 6.9230 × 10−6 (°C−1), 128.40 and 73.70 MPa, respectively, good acid-base-salt resistance, a smooth mold surface, and easy hand mold fabrication. Both obtained porcelain and bone china hand molds are a low production cost, making them suitable for natural and synthetic rubber latex glove formation.


2020 ◽  
Vol 45 (46) ◽  
pp. 24883-24894 ◽  
Author(s):  
Ba Nghiep Nguyen ◽  
Daniel R. Merkel ◽  
Kenneth I. Johnson ◽  
David W. Gotthold ◽  
Kevin L. Simmons ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document