Temperature-driven directional coalescence of silver nanoparticles

2016 ◽  
Vol 23 (3) ◽  
pp. 718-728 ◽  
Author(s):  
Shi Yan ◽  
Dongbai Sun ◽  
Yu Gong ◽  
Yuanyuan Tan ◽  
Xueqing Xing ◽  
...  

Silver nanoparticles were synthesized with a chemical reduction method in the presence of polyvinylpyrrolidone as stabilizing agent. The thermal stability behavior of the silver nanoparticles was studied in the temperature range from 25 to 700°C. Thermal gravimetric analysis was used to measure the weight loss of the silver nanoparticles. Scanning electron microscopy and high-resolution transmission electron microscopy were used to observe the morphology and the change in shape of the silver nanoparticles.In situtemperature-dependent small-angle X-ray scattering was used to detect the increase in particle size with temperature.In situtemperature-dependent X-ray diffraction was used to characterize the increase in nanocrystal size and the thermal expansion coefficient. The results demonstrate that sequential slow and fast Ostward ripening are the main methods of nanoparticle growth at lower temperatures (<500°C), whereas successive random and directional coalescences are the main methods of nanoparticle growth at higher temperatures (>500°C). A four-stage model can be used to describe the whole sintering process. The thermal expansion coefficient (2.8 × 10−5 K−1) of silver nanoparticles is about 30% larger than that of bulk silver. To our knowledge, the temperature-driven directional coalescence of silver nanocrystals is reported for the first time. Two possible mechanisms of directional coalescence have been proposed. This study is of importance not only in terms of its fundamental academic interest but also in terms of the thermal stability of silver nanoparticles.

2017 ◽  
Vol 254 (5) ◽  
pp. 1600695 ◽  
Author(s):  
I. N. Leontyev ◽  
A. A. Kulbakov ◽  
M. Allix ◽  
A. Rakhmatullin ◽  
A. B. Kuriganova ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 613 ◽  
Author(s):  
Nolwenn Tranvouez ◽  
Philippe Steyer ◽  
Annie Malchère ◽  
Pascal Boulet ◽  
Fabien Capon ◽  
...  

Amorphous thin films of La–Cu–O deposited by magnetron sputtering have been annealed at different temperatures and in situ analyzed by X-ray diffraction. These experiments were useful to determine the crystallization temperature and to follow the crystallization process of the film. The in situ annealing X-ray diffraction analyses have been also used to determine the thermal expansion coefficient of La2CuO4 thin film. The estimated value is close to that obtained for a commercial powder. The thermal expansion coefficient value with additional environmental scanning electron microscopy observations explains the delamination origin that occurs during the annealing before the crystallization step. The buckling and delamination of the film observed is caused by the thermal expansion coefficient mismatch of the film and the substrate. During the heating step, the mismatch generates compressive stress at the film/substrate interface, causing the film to lift off and crack in the typical way.


2020 ◽  
Vol 31 (28) ◽  
pp. 285709
Author(s):  
Monis Abdulmanan Abdullah ◽  
Thar Mohammed Badri Albarody ◽  
Alaa Raad Hussein

2016 ◽  
Vol 18 (31) ◽  
pp. 21508-21517 ◽  
Author(s):  
Xiao-Ye Zhou ◽  
Bao-Ling Huang ◽  
Tong-Yi Zhang

Surfaces of nanomaterials play an essential role in size-dependent material properties.


2007 ◽  
Vol 84 (5) ◽  
pp. 818 ◽  
Author(s):  
Nicholas C. Corsepius ◽  
Thomas C. DeVore ◽  
Barbara A. Reisner ◽  
Deborah L. Warnaar

2014 ◽  
Vol 602-603 ◽  
pp. 628-631
Author(s):  
Xing Yong Gu ◽  
Ping Li ◽  
Wei Xia Dong ◽  
Ting Luo

Two types of mullite-Al2O3 composites were designed and sintered in situ from different composition containing Al composites e.g. kaolin, alumina hydroxide and calcined bauxite etc, and auxiliary additives. The phase composition and microstructure were studied using X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. Bulk density, apparent porosity, thermal expansion coefficient and bending strength were also measured. The two samples exhibited XRD reflections characteristic of alumina and mullite phases. The amount of these phases depended on starting batch compositions, and reaction of starting and auxiliary materials together to form mullite. Because of in-situ formation of mullite fiber, the bulk density and bending strength were improved and apparent porosity was decreased for the composites with uniform microstructure. The presence of high mullite phase was found to decrease the thermal expansion coefficient. The potential effect of these morphologies and phase on properties was discussed. These mullite-Al2O3 composite was expected to have major applications in the areas of refractory material.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Hongfang Hou ◽  
Wanjing Cui ◽  
Jiaojiao Chen ◽  
Lingzong Meng ◽  
Yafei Guo ◽  
...  

Densities of sodium arsenite (NaAsO2) aqueous solution with the molality varied from 0.19570 to 1.94236 mol·kg−1 at temperature intervals of 5 K from 283.15 to 363.15 K and 101 ± 5 kPa were measured by a precise Anton Paar Digital vibrating-tube densimeter. Apparent molar volumes (VΦ) and thermal expansion coefficient (α) were obtained on the basis of experimental data. The 3D diagram of apparent molar volume against temperature and molality and the diagram of thermal expansion coefficient against molality were generated. According to the Pitzer ion-interaction equation of the apparent molar volume model, the Pitzer single-salt parameters (βM,X0υ, βM,X1υ, βM,X2υ, and CM,Xυ, MX = NaAsO2) and their temperature-dependent correlation F(i, p, T) = a1 + a2ln (T/298.15) + a3(T − 298.15) + a4/(620 − T) + a5/(T − 227) (where T is temperature in Kelvin and ai are the correlation coefficients) for NaAsO2 were obtained for the first time. The predictive apparent molar volumes agree well with the experimental values, and those results indicated that the single-salt parameters and the temperature-dependent formula are reliable.


2018 ◽  
Vol 930 ◽  
pp. 224-229
Author(s):  
Marcos Antônio Guerra ◽  
Jeferson Prado Swerts ◽  
Mei Abe Funcia ◽  
Neide Aparecida Mariano ◽  
Maria Gabriela Nogueira Campos

Polyethylene terephthalate (PET) fiber is a very versatile fiber that can be produced with different properties, such as antimicrobial activity. This study aims to synthesize antimicrobial PET filaments incorporated with silver nanoparticles immobilized in silica (NPAg-Si) by bulk additive method. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) characterized the obtained filaments at concentrations (w/w) of 0.008%, 0.016%, 0.032%, 0.047% and 0.063% NPAg-Si, in order to identify the nanoparticles and analyze their dispersion in the polymeric matrix. Moreover, thermogravimetric analysis (TGA) was carry out to confirm the presence and concentration of the silver nanoparticles in the filaments as well as the thermal stability of the nanocomposites. The bulk addition method was efficient to produce PET-Silver filaments with silver nanoparticles homogeneously dispersed in the PET matrix.


Sign in / Sign up

Export Citation Format

Share Document