Impact of Peak and Valley Period Partition on Load Curve of Distribution System with EV

2013 ◽  
Vol 724-725 ◽  
pp. 1344-1349
Author(s):  
Zhen Fu Zhang ◽  
Xiao Qing Huang ◽  
Bo Xiao

Large-scale adoption of electric vehicles may impose impact on grid. In order to formulate the appropriate scheme of time-of-use (TOU) to lower the adverse effect of charging load on the power grid, it is necessary to analyze the impact of the peak-valley period partition on the load curve of distribution system with electric vehicles. The electric vehicle charging load model considering TOU was built according to the statistics of the driving habits. Several scenarios were set according to different period partitions and the changes of the load at start time of valley period, numerical value and moment of peak load and peak-valley differences were analyzed with the Monte Carlo simulation method under those scenarios. The simulation results show that the farther between the time instant of peak load and start moment of valley period the less impact it has on load curve of distribution system.

2014 ◽  
Vol 672-674 ◽  
pp. 1165-1168
Author(s):  
Wei Liu ◽  
Tao Wei ◽  
Ming Xin Zhao ◽  
Dan Xu ◽  
Chao Gao

This paper forecast the electric load of the mass electric cars connected to the electric grid in charging and discharging; considered the inventory forecast of electric vehicles; comprehensive analyzed the charge and discharge characteristics of the electric cars’ charging infrastructures and the impact factors such as users’ behaviors as well as the using frequency, which lead to different load distribution at different times. It calculated the total load of electric vehicles into the load curve and the load curve of the characteristics under different regions (industrial, commercial and residential). Concludes that the mass electric cars connected to the electricity grid will increase the peak load of power grid, and lay the foundation for the subsequent market management and optimization control.


2014 ◽  
Vol 953-954 ◽  
pp. 1354-1358
Author(s):  
Wen Chen ◽  
Chun Lin Guo ◽  
Zong Feng Li ◽  
Dong Ming Jia ◽  
Jun Chen ◽  
...  

With the large-scale EV(electric vehicle) integrating into the power system, new challenges has been brought to the planning as well as the security of the network. There will be a great impact on the system if the system operator ignores the vast quantity of EV charging at the same. Thus, taking measures, e.g. the multiple tariff, is of vital importance to give the guidance to the EV owners to charging wisely to save the daily cost on charging, as well as reduce the gap between peak load and valley load. A model for TOU has been presented in this paper. In the model , an objective function is declared to describe the purpose of TOU, and the optimal solution is gained according to the response of EV when the price of electricity changes. Finally , a case based on the daily load curve of a certain place is calculated with the model in this paper.


2014 ◽  
Vol 953-954 ◽  
pp. 1367-1371
Author(s):  
Dong Hua Wang ◽  
Cheng Xiong Mao ◽  
Min Wei Wang ◽  
Ji Ming Lu ◽  
Hua Fan ◽  
...  

The plug-in electric vehicles (PEVs) would exert inevitable impact on distribution system operation due to the spatial and temporal stochastic nature of the charging load. Based on the probability distributions of battery charging start time and the initial state-of-charge (SOC), the spatial and temporal charging loads of PEVs are analyzed on load nature and charging behaviors among different functional distribution areas. Taking IEEE 33-bus distribution system as an example, the Monte Carlo method is adopted to simulate charging load under different charging strategies and charging places for assess the impact on network loss and nodal voltage using standard load flow calculations. The results show that the choice of control strategies can improve the impacts of PEVs charging on distribution grid; a well-developed public charging infrastructure could reduce the stress on the residential distribution systems; optimal assignment of PEVs charging in residential area and industrial or commercial areas would provide a reference for charging infrastructure construction.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2595 ◽  
Author(s):  
Guozhong Liu ◽  
Li Kang ◽  
Zeyu Luan ◽  
Jing Qiu ◽  
Fenglei Zheng

The optimal location and size of charging stations are important considerations in relation to the large-scale application of electric vehicles (EVs). In this context, considering that charging stations are both traffic service facilities and common electric facilities, a multi-objective model is built, with the objectives of maximizing the captured traffic flow in traffic networks and minimizing the power loss in distribution networks. There are two kinds of charging stations that are considered in this paper, and the planning of EV charge stations and distribution networks is jointly modelled. The formulated multi-objective optimization problem is handled by a fuzzy membership function. The genetic algorithm (GA) is used to solve the objective function. In case studies, a 33-node distribution system and a 25-node traffic network are used to verify the effectiveness of the proposed model. The location and capacity of two kinds of charging stations are designed in the case studies, after which the impact of the battery on the captured traffic flow is analyzed as well.


2021 ◽  
Vol 236 ◽  
pp. 02003
Author(s):  
Wang Jun ◽  
Li Xincong ◽  
Xia Minhao ◽  
Xu Lin ◽  
Wang Bing

With the increasing popularity of electric vehicles, the disordered charging of large-scale electric vehicles will have a great impact on the safe operation of regional distribution network. In order to solve the security problems that may occur in the power grid, this paper uses the time-sharing pricing time division method for EV charging to meet the needs of EV users. Based on this method, a multi-objective optimization model is established, which takes the electric vehicle charging capacity and power as the constraints, and based on the minimum user charging cost and the minimum load curve variance. Then, the model is solved by non-dominated sorting genetic algorithm (NSGA -Ⅱ), and the optimal compromise solution is extracted by using fuzzy set theory. Finally, the correctness of the proposed model is verified by the example.


Electricity ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 91-109
Author(s):  
Julian Wruk ◽  
Kevin Cibis ◽  
Matthias Resch ◽  
Hanne Sæle ◽  
Markus Zdrallek

This article outlines methods to facilitate the assessment of the impact of electric vehicle charging on distribution networks at planning stage and applies them to a case study. As network planning is becoming a more complex task, an approach to automated network planning that yields the optimal reinforcement strategy is outlined. Different reinforcement measures are weighted against each other in terms of technical feasibility and costs by applying a genetic algorithm. Traditional reinforcements as well as novel solutions including voltage regulation are considered. To account for electric vehicle charging, a method to determine the uptake in equivalent load is presented. For this, measured data of households and statistical data of electric vehicles are combined in a stochastic analysis to determine the simultaneity factors of household load including electric vehicle charging. The developed methods are applied to an exemplary case study with Norwegian low-voltage networks. Different penetration rates of electric vehicles on a development path until 2040 are considered.


2021 ◽  
Vol 13 (6) ◽  
pp. 3199
Author(s):  
Laith Shalalfeh ◽  
Ashraf AlShalalfeh ◽  
Khaled Alkaradsheh ◽  
Mahmoud Alhamarneh ◽  
Ahmad Bashaireh

An increasing number of electric vehicles (EVs) are replacing gasoline vehicles in the automobile market due to the economic and environmental benefits. The high penetration of EVs is one of the main challenges in the future smart grid. As a result of EV charging, an excessive overloading is expected in different elements of the power system, especially at the distribution level. In this paper, we evaluate the impact of EVs on the distribution system under three loading conditions (light, intermediate, and full). For each case, we estimate the maximum number of EVs that can be charged simultaneously before reaching different system limitations, including the undervoltage, overcurrent, and transformer capacity limit. Finally, we use the 19-node distribution system to study these limitations under different loading conditions. The 19-node system is one of the typical distribution systems in Jordan. Our work estimates the upper limit of the possible EV penetration before reaching the system stability margins.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4717 ◽  
Author(s):  
Sylvester Johansson ◽  
Jonas Persson ◽  
Stavros Lazarou ◽  
Andreas Theocharis

Social considerations for a sustainable future lead to market demands for electromobility. Hence, electrical power distribution operators are concerned about the real ongoing problem of the electrification of the transport sector. In this regard, the paper aims to investigate the large-scale integration of electric vehicles in a Swedish distribution network. To this end, the integration pattern is taken into consideration as appears in the literature for other countries and applies to the Swedish culture. Moreover, different charging power levels including smart charging techniques are examined for several percentages of electric vehicles penetration. Industrial simulation tools proven for their accuracy are used for the study. The results indicate that the grid can manage about 50% electric vehicles penetration at its current capacity. This percentage decreases when higher charging power levels apply, while the transformers appear overloaded in many cases. The investigation of alternatives to increase the grid’s capabilities reveal that smart techniques are comparable to the conventional re-dimension of the grid. At present, the increased integration of electric vehicles is manageable by implementing a combination of smart gird and upgrade investments in comparison to technically expensive alternatives based on grid digitalization and algorithms that need to be further confirmed for their reliability for power sharing and energy management.


2013 ◽  
Vol 291-294 ◽  
pp. 2022-2027
Author(s):  
Hui Shi Liang ◽  
Hai Tao Liu ◽  
Jian Su

This paper presents a methodology for substation optimal planning considering DG for peak shaving. Utility can take effective demand-side management (DSM) to encourage customer-owned DG to participate in peak load shaving, and it can also construct utility DG to meet the peak load demand. In this paper, the impact of DG on peak load shaving is analyzed, and DG is taken as a complement to T&D system to meet load demand, which is considered in the substation planning. Substations sizing and location and new-built utility DG capacity is optimized using Particle Swarm Optimization (PSO), in which supply area of each substation is obtained by Voronoi diagram method. Case study shows that planning result considering DG for peak shaving can defer T&D system expansion so that considerable investment can be saved. Especially for those areas with high cost of T&D system construction, constructing DG to meet peak load demand would be a more economic way.


2014 ◽  
Vol 672-674 ◽  
pp. 1175-1178
Author(s):  
Guang Min Fan ◽  
Ling Xu Guo ◽  
Wei Liang ◽  
Hong Tao Qie

The increasingly serious energy crisis and environmental pollution problems promote the large-scale application of microgrids (MGs) and electric vehicles (EVs). As the main carrier of MGs and EVs, distribution network is gradually presenting multi-source and active characteristics. A fast service restoration method of multi-source active distribution network with MGs and EVs is proposed in this paper for service restoration of distribution network, which takes effectiveness, rapidity, economy and reliability into consideration. Then, different optimal power flow (OPF) models for the service restoration strategy are constructed separately to minimize the network loss after service restoration. In addition, a genetic algorithm was introduced to solve the OPF model. The analysis of the service restoration strategy is carried out on an IEEE distribution system with three-feeder and eighteen nodes containing MGs and EVs, and the feasibility and effectiveness are verified


Sign in / Sign up

Export Citation Format

Share Document