Study on Energy and Stress of Irregular Failure Zone of Upper Layered in Slice Mining

2013 ◽  
Vol 734-737 ◽  
pp. 828-832
Author(s):  
Xiao Biao Zhang ◽  
Kun Zhou ◽  
Hai Tao Li ◽  
Jiao Xia Liu ◽  
Yun Yi Zhang

Under the condition of the top layered have irregular zone , due to the stress concentration caused by the upper leaf residual coal pillar , lower leaf will increase recovery difficult. This article reappear the scene of irregular top delamination area and the surrounding environment by FLAC3D numerical simulation software, receive the distribution condition of stress, displacement and the elastic energy of media under this condition, provide abundant basis for develop highly targeted production safety measuresa, solve the problem of data range is smaller,because the restriction of the detection equipment and other technical reasons detection equipment under the scene.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zeng-qiang Yang ◽  
Hong-mei Wang ◽  
De-quan Sun ◽  
Xian-jian Ma ◽  
Ming-bao Xu ◽  
...  

In order to study the occurrence mechanism of rock burst in L-shaped zone during a fully mechanized mining period, the No. 705 working face which is located in Baojishan Colliery is taken as a typical engineering background. By means of in situ investigation, theoretical analysis, numerical simulation, in situ tests, and relevant monitoring methods, the occurrence mechanism of rock burst and corresponding prevention technology are studied. The results show that a coal pillar with some confining pressure in the L-shaped zone is established by FLAC3D numerical simulation software, and the numerical simulation results indicate that the change in static load has a greater effect than dynamic load on coal pillar unstable failure; the static load plays a role in storing energy, and dynamic load plays a role in inducing rock burst; the bolt-mesh-cable support and high-pressure water jet unloading combined technology is put forward to prevent rock burst in roadways, and the numerical simulation results show that stress distribution of surrounding rock meets the model of strong-soft-strong (3S) structure, and the moment distribution is reasonable. In the follow-up mining, a limit value of coal fines is used to determine that this measure is a reasonable method to prevent rock burst. The study conclusions provide theoretical foundation and new guidance for preventing rock burst by synergistic effect technology in roadways.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xie Fuxing

The gob-side roadway of 130205, a large-mining-height working face in the Yangchangwan coal mine, was investigated in terms of the mine pressure law and support technology for large mining heights and narrow coal pillars for mining roadways. The research included field investigations, theoretical analysis, numerical simulation, field tests, and other methods. This paper analyzes the form of movement for overlying rock structure in a gob-side entry with a large mining height and summarizes the stress state and deformation failure characteristics of the surrounding rock. The failure mechanism of the surrounding rock of the gob-side roadway and controllable engineering factors causing deformation were analyzed. FLAC3D numerical simulation software was used to explore the influence law of coal pillar width, working face mining height, and mining intensity on the stability of the surrounding rock of the gob-side roadway. Ensuring the integrity of the coal pillar, improving the coordination of the system, and using asymmetric support structures as the core support concept are proposed. A reasonably designed support scheme for the gob-side roadway of the working face for 130205 was conducted, and a desirable engineering effect was obtained through field practice verification.


2013 ◽  
Vol 807-809 ◽  
pp. 2393-2397
Author(s):  
Ai Qing Liu

The principle of roadway layout is in the low stress zone. Roadway will be difficult to support due to the lower seam face in the close multi-seam is affected by dynamic pressure of the upper seam face mining. The distribution of abutment pressure after the upper seam face mining were analyzed,concluded that: The layout of lower seam roadway should avoid the stress concentration area of residual coal pillar; Stress concentration of the coal pillar is related with mining order, and stress concentration degree is higher in the first mining side of the coal pillar; when the upper coal seam is gob, the layout of the roadway in the lower coal seam with the pattern of homodromous alternate interior layout will be easy to support.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xudong Liu ◽  
Wenlong Shen ◽  
Jianbiao Bai ◽  
Rui Wang ◽  
Jizhong Kang ◽  
...  

Underground space is vulnerable to large deformation influenced by the abnormal stress induced by the bearing coal pillar. A numerical simulation model was established to determine the redistribution of the abnormal stress induced by the mining activities. The double-yield model, the strain softening model, the interface model, and the Mohr–Coulomb model were determined to simulate the gob compaction effect, the pillar strength reduction effect, the structure plane discontinuity effect, and the rock mechanical behavior, respectively. This numerical simulation model is reliable to predict the abnormal stress under the bearing coal pillar by the comparison of the abutment stress from this model and the existing theoretical model as well as the entry roof surface displacement from this model and the field measuring method. The results from the validated numerical model indicate that the abnormal stress including stress concentration coefficient, stress gradient, and lateral pressure coefficient will redistribute to another state that the stress concentration coefficient and stress gradient increase gradually and then decrease, and the lateral pressure coefficient decreases gradually, then increases, and finally decreases sharply with the approach of the mining working face. Their maximum increasing rates are calculated as 121.05%, 198.56%, and 236.82%, respectively. This predicted mining-induced redistribution of the abnormal stress is available for designing the underground entry layout in the determination of the entry position, determination of the driving operation time, mining disturbing range warning, and the prediction of the strengthening support area.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Wenhao Guo ◽  
Anye Cao ◽  
Chengchun Xue ◽  
Yang Hu ◽  
Songwei Wang ◽  
...  

Coal mine pillar burst frequently occurs in Western China, which seriously restricts safe production. This paper takes the 35 m coal pillar of the 3102 working face of MKQ coal mine as the engineering background. The mechanism and evolution control of pillar bursts in multithick key strata are studied using field investigation, theoretical analysis, and numerical simulation. The mechanism of dynamic and static stress-induced pillar bursts was revealed combining the “O-X” broken features for key strata and numerical simulation of pillar stress evolution. A prevention scheme is put forward for strata presplit blasting and adjusting coal pillar width to minimize the dynamic and static stresses. The results demonstrate the following. (1) In the multithick strata, the first and second near-field subkey strata have perpendicular “O-X” broken features, whereas the third far-field subkey has parallel “O-X” broken features. The working face has three kinds of periodic weighting phenomena: long, medium, and short. (2) The simulated vertical stress curve of 35 m coal pillar goes through three states: two-peak, asymmetric trapezoidal and symmetrical trapezoidal shape with the different advancing position of working face. The stress concentration is extensively promoting a high-risk area for rock burst. (3) The coal pillar burst was induced by the superposition of energy released by the key strata breaking and the elastic energy accumulated in the wide coal pillar. (4) The monitoring data showed that the long, medium, and short periodic weighting steps of multithick key strata are 141.6 m, 43.2–49.6 m, and 17.6–27.2 m, respectively. The microseismic events energy, frequency, and stress of hydraulic support increment are the highest during the long periodic weighting, and the spatial distribution of microseismic events coincides with the stress concentration area. The theoretical analysis is confirmed with the field practice.


2014 ◽  
Vol 941-944 ◽  
pp. 2533-2538
Author(s):  
Li Li ◽  
An Bin Zhang ◽  
Chun Lei Zhang

WuTongZhuang No.182309 mining face is an isolated mining face. The abutment pressure is big and roadway deformation is severe due to driving roadway along goaf with short pillar remained. In view of these problems, taking WuTongZhuang No.182309 mining face as project background, the law of the abutment stress distribution was analyzed by use of numerical simulation software FLAC3D and field measurement study. The results showed that the influence scope of the lead abutment pressure was about 55m , the peak value was about 6m ahead of the mining face and the stress concentration factor is 3.3.Based on the above study results, a scheme of advanced support was proposed which effectively controlled the roadway deformation and ensured the safety production of the mining face.


2013 ◽  
Vol 807-809 ◽  
pp. 2288-2293 ◽  
Author(s):  
Xiang Qian Wang ◽  
Xiang Rui Meng ◽  
Zhao Ning Gao

Based upon the engineering background of IV315 coal mining face of Mengzhuang Coal Mine, the numerical simulation software UDEC is used to analyze rational packing width under the conditions of different filling widths on the driving roadway. The rational coal pillar size is initially decided as 2.0 meters through simulating and analyzing. On this basis, the influence of second mining on the retaining roadway was analyzed by numerical simulation. Combined with the field measurement, the support parameters and the 2.0 meters packing width are proven to be rational, which provides a reference for the coal mining faces with similar conditions.


2016 ◽  
Vol 9 (1) ◽  
pp. 47-54
Author(s):  
Jing Shen ◽  
Mingran Chang

One of the main reasons for coal mine fire is spontaneous combustion of residual coal in gob. As the difference of compaction degree of coal and rock, the underground gob can be considered as a porous medium and divided into “three zones” in accordance with the criteria. The “three zones” are “heat dissipation zone”, “oxidation zone” and “choking zone”, respectively. Temperature programming experiments are taken and numerical simulation with obtained experimental data is utilized to analyze the distribution of “three zones” in this paper. Different width and depth of “oxidation zone” are obtained when the inlet air velocity is changed. As the nitrogen injection has inhibition effect on spontaneous combustion of residual coal in gob, nitrogen is injected into the gob. The widths of “oxidation zone” are compared before and after nitrogen injection. And ultimately the optimum location and volume of nitrogen injection are found out.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 307
Author(s):  
Cheng-Tang Pan ◽  
Che-Hsin Lin ◽  
Ya-Kang Huang ◽  
Jason S. C. Jang ◽  
Hsuan-Kai Lin ◽  
...  

Intervertebral fusion surgery for spinal trauma, degeneration, and deformity correction is a major vertebral reconstruction operation. For most cages, the stiffness of the cage is high enough to cause stress concentration, leading to a stress shielding effect between the vertebral bones and the cages. The stress shielding effect affects the outcome after the reconstruction surgery, easily causing damage and leading to a higher risk of reoperation. A porous structure for the spinal fusion cage can effectively reduce the stiffness to obtain more comparative strength for the surrounding tissue. In this study, an intervertebral cage with a porous gradation structure was designed for Ti64ELI alloy powders bonded by the selective laser melting (SLM) process. The medical imaging software InVesalius and 3D surface reconstruction software Geomagic Studio 12 (Raindrop Geomagic Inc., Morrisville, NC, USA) were utilized to establish the vertebra model, and ANSYS Workbench 16 (Ansys Inc, Canonsburg, PA, USA) simulation software was used to simulate the stress and strain of the motions including vertical body-weighted compression, flexion, extension, lateral bending, and rotation. The intervertebral cage with a hollow cylinder had porosity values of 80–70–60–70–80% (from center to both top side and bottom side) and had porosity values of 60–70–80 (from outside to inside). In addition, according to the contact areas between the vertebras and cages, the shape of the cages can be custom-designed. The cages underwent fatigue tests by following ASTM F2077-17. Then, mechanical property simulations of the cages were conducted for a comparison with the commercially available cages from three companies: Zimmer (Zimmer Biomet Holdings, Inc., Warsaw, IN, USA), Ulrich (Germany), and B. Braun (Germany). The results show that the stress and strain distribution of the cages are consistent with the ones of human bone, and show a uniform stress distribution, which can reduce stress concentration.


Sign in / Sign up

Export Citation Format

Share Document