Strengthening of Reinforced Concrete Frames Not Designed According to TDY2007 with External Shear Walls

2013 ◽  
Vol 747 ◽  
pp. 433-436 ◽  
Author(s):  
Alptug Unal ◽  
Mevlut Yasar Kaltakci ◽  
Fatih Suleyman Balik ◽  
Hasan Husnu Korkmaz ◽  
Fatih Bahadir ◽  
...  

Recently repair and strengthening of existing buildings become a popular research topic. The strengthening of buildings necessitates the evacuation of the structure. On the other hand, school, hospital type structures must continue their function. In this study exterior shear wall addition to the existing exterior frames is proposed. Since the application is applied to the exterior of the building, the structure can continue its function during the application. In this study, 1/3 scaled 4 specimens were tested under reversed cyclic loading simulating the seismic action. First reference specimen was the bare frame and didnt contain a strengthening and tested to see the reference behavior. Specimens have several design mistakes to represent the existing older structures. The other specimens retrofitted with different configurations. The second specimen was strengthened with exterior shear walls and contained a window opening. The last specimen was also retrofitted with exterior shear wall but the shear walls were divided into two pieces. The load-displacement curves, envelope curves, relative displacement curves, energy absorption curves and rigidity curves were presented and compared within the paper. In the conclusion, the capacity increase of the frame was discussed and several recommendations were presented.

Author(s):  
Nima Aghniaey ◽  
Murat Saatcioglu ◽  
Hassan Aoude

Research on seismic behaviour of shear walls with high-strength steel is limited. A combined experimental and analytical investigation was conducted to assess seismic behaviour of flexure-dominant shear walls. A large-scale concrete shear wall with Grade 690 MPa (ASTM A1035) reinforcement and 84 MPa concrete was tested under simulated seismic loading. The wall was a ¼ -scale of a 6-storey shear wall, with 4.53 m height and 1.45 m length. It sustained a lateral drift of 1.8% prior to developing failure due to the rupturing of longitudinal reinforcement. This is 35% less than the drift capacity of a companion wall reinforced with 400 MPa reinforcement tested earlier. VecTor2 software was used to conduct an analytical parametric study to expand the experimental findings. The results indicate that the reinforcement grade has a significant impact on strength, ductility and hysteretic behaviour of shear walls.


2013 ◽  
Vol 747 ◽  
pp. 265-268 ◽  
Author(s):  
Fatih Bahadir ◽  
Mehmet Kamanli ◽  
Hasan Husnu Korkmaz ◽  
Fatih Suleyman Balik ◽  
Alptug Unal ◽  
...  

Turkey is situated on a very earthquake zone of the world namely Alp-Himalayan Earthquake Zone. Several destructive earthquakes resulted in high dead losses in the last century. Turkish building stock consisted of nonductile RC framed structures commonly 3 to 7 stories. The common properties of the existing structures is the poor lateral resistance. The residental buildings with poor earthquake resistance must be rehabilitated with a rapid, economical, feasible and effective strengthening methods. The external shear wall addition to the existing poor frame is studied experimentally in this study. 6 specimens were tested under reversed cyclic lateral loading simulating the seismic action. The first specimen was the reference specimen and didn't contain any strengthening and tested to see reference behaviour. The other specimens were strengthened with external shear walls with or without openings. The size of the openings is a parameter in the study. Secons specimen didn't contain any opening. Columns of the frames also jacketed with reinforced concrete. The maximum lateral load carrying capacity, ductility capacities, energy consuption capacities, improvement in the lateral rigidities were investigated.


2017 ◽  
Vol 44 (5) ◽  
pp. 338-347 ◽  
Author(s):  
Alex Lafontaine ◽  
Ghasan Doudak

Joints simulating typical connections of gypsum wallboard (GWB) sheathed walls were subjected to reversed cyclic loading. Three different empirical models were analyzed for the purpose of determining the most appropriate fastener slip equation. The power model was used to develop the fastener slip equations, for nails and screws, as a function of GWB density and fastener diameter. The accuracy of the developed fastener slip model is validated against full-scale shear wall tests. The predictive models seem to be able to replicate the wall behaviour with reasonable accuracy until ultimate capacity. The results show a reasonable agreement between the model prediction and those obtained from the shear wall tests. The model prediction for shear walls constructed with low fastener spacing is less accurate. This result was expected since the small fastener spacing violates the minimum spacing requirements in the design standard (CSA 2014) and caused a brittle failure.


2013 ◽  
Vol 663 ◽  
pp. 159-163
Author(s):  
Hae Jun Yang ◽  
Hyun Do Yun

In this study, two reinforced concrete (RC) squat shear walls with height-to-length ratio of 0.55 and non-ductile reinforcement details are tested under reversed cyclic loading. Emphasis of the study is placed on the hysteretic behavior and cracking procedure of RC squat shear walls in accordance with the presence and absence of vertical seam on the wall panel. Two specimens had the same rectangular cross-section of 1,100 x 50mm, with wall panel heights of 600mm. To investigate the effect of vertical seams on the wall panel on the structural behavior of shear wall, one wall (CON-S) with three vertical seams with dimension of 260 x 40mm was made and the other (CON-N) was a solid wall without seams. The test results indicated that a squat shear wall with vertical seams exhibited more stable hysteretic behavior than a solid shear wall. Vertical seams on the wall panel improve the ductility and energy dissipation capacity but decrease the maximum strength of RC non-ductile squat shear wall.


2018 ◽  
Vol 11 (4) ◽  
pp. 1-7
Author(s):  
Huda M. Najem

The goal behind this research is to highlight on structural system using composite steel plate shear wall, this approach is widely used in many countries, due to its desired features. Composite steel plate shear wall are often considered essential in design of building to resist seismic action. This paper discuss the effect of concrete strength on behavior of CSPW, for this objective one story one bay model with different compressive strength (25, 28 , 45, 50, 55, 65)MPa ,this model formed by finite element code which is advanced by university of Amirkabir. The accuracy of the representation of the model by numerical analysis, numerical result contrast with valid experiment which explain suitable agreement. Result show increasing the compressive strength would advance the cycle behavior. By contrast the result in elastic region, it was seen initial stiffness is not enhance by varying the compressive strength.


2014 ◽  
Vol 525 ◽  
pp. 427-430
Author(s):  
Zhong Jie Yu ◽  
Seung Ju Han ◽  
Seok Joon Jang ◽  
Hyun Do Yun

This study investigates experimentally the applicability of selectively weakening retrofit for existing and non-ductile squat shear walls. To evaluate the effect of vertical seams on the wall panel on the hysteretic behavior and failure mode of Strain-Hardening Cement Composite (SHCC) squat shear walls, two 1/3 scale shear walls with vertical seams as a variable were made and tested under reversed cyclic loadings. All specimens had same rectangular cross-section 1,100mm¡¿50mm, with panel height 600mm. The vertical seam is 40mm wide and 260mm high and 460 high. SHCC for wall specimens was supplied by a local ready mix company with specified strength of 50MPa. The test results of this study; length of the slit is increased in squat shear wall, which the specimen became load-carrying capacity and stiffness. But have vertical silt, the squat shear wall shows aspects of ductility destruction.


CONSTRUCTION ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 93-101
Author(s):  
Saffuan Wan Ahmad ◽  
Muhammad Aimran Amzar Kamarudin ◽  
Wan Aniq Ridhwan Wan Ariffin

On the 5th June 2015, an earthquake hit Ranau, Sabah with a magnitude of 6.0 that caused 18 casualties and several injuries are one of the examples that show Malaysia is not safe from any seismic event. Most of the structure in Malaysia was designed not to include seismic action.  Furthermore, an area that has a high density of population such as in the central region (Klang valley) and several main cities in Malaysia has less available land to build landed housing and uses high-rise apartments as an alternative. High-rise buildings that are normally having problems with soft story mechanisms and plan irregularity which could lead to severe damage when earthquakes happen. This study aims to observe the response of high-rise buildings when under different earthquakes in the presence of shear walls. To achieve this objective two models were modelled and analyzed by using ETABS software, the one with a shear wall and the one with no shear wall. The methods used in this study were the response spectrum method and time-history analysis. In the end, the parameters observed were base shear, story stiffness, story drift, and story displacement. The observations highlighted that the effect of earthquake intensities shows a significant effect. The acquired results indicated that the building with the shear wall is more resistant and strong structures as compared to buildings without shear wall when undergoing seismic analysis.


PCI Journal ◽  
1998 ◽  
Vol 43 (6) ◽  
pp. 58-71 ◽  
Author(s):  
Rosa M. Vasconez ◽  
Antoine E. Naaman ◽  
James K. Wight

2019 ◽  
Author(s):  
Hossein Alimohammadi ◽  
Mostafa Dalvi Esfahani ◽  
Mohammadali Lotfollahi Yaghin

In this study, the seismic behavior of the concrete shear wall considering the opening with different shapes and constant cross-section has been studied, and for this purpose, several shear walls are placed under the increasingly non-linear static analysis (Pushover). These case studies modeled in 3D Abaqus Software, and the results of the ductility coefficient, hardness, energy absorption, added resistance, the final shape, and the final resistance are compared to shear walls without opening.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Sung-Jun Pang ◽  
Kyung-Sun Ahn ◽  
Seog Goo Kang ◽  
Jung-Kwon Oh

AbstractIn this study, the lateral resistances of mass timber shear walls were investigated for seismic design. The lateral resistances were predicted by kinematic models with mechanical properties of connectors, and compared with experimental data. Four out of 7 shear wall specimens consisted of a single Ply-lam panel and withdrawal-type connectors. Three out of 7 shear wall specimens consisted of two panels made by dividing a single panel in half. The divided panels were connected by 2 or 4 connectors like a single panel before being divided. The applied vertical load was 0, 24, or 120 kN, and the number of connectors for connecting the Ply-lam wall-to-floor was 2 or 4. As a result, the tested data were 6.3 to 52.7% higher than the predicted value by kinematic models, and it means that the lateral resistance can be designed by the behavior of the connector, and the prediction will be safe. The effects of wall-to-wall connectors, wall-to-floor connectors and vertical loads on the shear wall were analyzed with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document