The Analysis of Feeding Crossbeam on the Automatic Aluminous-Winding Machine

2013 ◽  
Vol 748 ◽  
pp. 336-340
Author(s):  
Yi Hua Zhang ◽  
Pei Hai Hou ◽  
Tie Qun Duan ◽  
Yuan Gao ◽  
Hui Min Han ◽  
...  

The feeding crossbeam on the automatic aluminous-winding machine plays a supporting role in the preparation process of feeding pipe, the deformation of the feeding crossbeam have a direct impact on mechanical accuracy, it is difficult problem in model design, which is how to design a reasonable structure and make the crossbeam meets the requirements of strength and stiffness, as well achieve lightweight design. This article considers the complex force of crossbeam, and bases on the principle of virtual work and finite element theory, using ANASYS software to make a finite element model, the relation curves of the stress and the strain under the maximum load are summarized and the stress concentration area is found, The current study provides more reliable results to improve design.

2011 ◽  
Vol 94-96 ◽  
pp. 2102-2106
Author(s):  
Xiao Hui Zhang ◽  
Jun Jia Cui ◽  
Cheng Xi Lei ◽  
Zhong Wen Xing

Stiffness is one of the most important performance indicators of cars’ parts. Currently, most of the major automobile panels are made of big sheet metal, whose stiffness are relatively small, which lead to a lot of difficulties in measurement during practice. The high stiffness of fixed stiffness testing instrument with gantry structure makes the automobile panel measured precisely. The finite element model was established by ANSYS in order to study the effect of load at typical work locations on strength and stiffness, and the strength of testing instrument under maximum load was also illustrated. The results showed that the displacement of the load point and the work load performed the linear growth. When the testing instrument was imposed the maximum working load, the displacement of load point was less than the measuring precision. The strength and stiffness of the testing instrument met the requirements of operation.


2019 ◽  
Vol 17 (09) ◽  
pp. 1950064
Author(s):  
P. F. Xu ◽  
S. Y. Duan ◽  
F. Wang

Lightweight of wheel hubs is the linchpin for reducing the unsprung mass and improving the vehicle dynamic and braking performance of vehicles, thus, sustaining stability and comfortability. Current experience-based lightweight designs of wheel hubs have been argued to render uneven distribution of materials. This work develops a novel method to combine the reverse modeling technique with the topological optimization method to derive lightweight wheel hubs based on the principles of mechanics. A reverse modeling technique is first adopted to scan and reproduce the prototype 3D geometry of the wheel hub with solid ribs. The finite element method (FEM) is then applied to perform stress analysis to identify the maximum stress and its location of wheel hub under variable potential physical conditions. The finite element model is then divided into optimization region and nonoptimized region: the former is the interior portion of spoke and the latter is the outer surface of the spoke. A topology optimization is then conducted to remove the optimization region which is interior material of the spokes. The hollow wheel hub is then reconstructed with constant wall thickness about 5[Formula: see text]mm via a reverse modeling technique. The results show that the reconstructed model can reduce the mass of 12.7% compared to the pre-optimized model. The present method of this paper can guarantee the optimal distribution of wheel hub material based on mechanics principle. It can be implemented automatically to shorten the time interval for optimal lightweight designs. It is especially preferable for many existing structures and components as it maintains the structural appearance of optimization object.


Author(s):  
V. Ramirez-Elias ◽  
E. Ledesma-Orozco ◽  
H. Hernandez-Moreno

This paper shows the finite element simulation of a representative specimen from the firewall section in the AEROMARMI ESTELA M1 aircraft. This specimen is manufactured in glass and carbon / epoxy laminates. The specimen is subjected to a load which direction and magnitude are determined by a previous dynamic loads study [10], taking into account the maximum load factor allowed by the FAA (Federal Aviation Administration) for utilitarian aircrafts [11]. A representative specimen is manufactured with the same features of the firewall. Meanwhile a fix is built in order to introduce the load directions on the representative specimen. The relationship between load and displacement is plotted for this representative specimen, whence the maximum displacement at the specific load is obtained, afterwards it is compared with the finite element model, which is modified in its laminate thicknesses in order to decrease the deviation error; subsequently this features could be applied to perform the whole firewall analysis in a future model [10].


2012 ◽  
Vol 538-541 ◽  
pp. 3137-3144 ◽  
Author(s):  
Wen Wei Wang ◽  
Cheng Jun Zhou ◽  
Cheng Lin ◽  
Jiao Yang Chen

The finite-element model of pure electric bus has been built and the free model analysis, displacement and stress analysis under bending condition and torsion condition have been conducted. Optimally design the pure electric bus frame based on multiple constrains. Reduce the body frame quality by 4.3% and meanwhile meet the modal and stress requirements.


2013 ◽  
Vol 753-755 ◽  
pp. 1124-1127
Author(s):  
Li Da Zhu ◽  
Shuai Xu ◽  
Wen Wen Liu ◽  
Ji Jiang Wu ◽  
Jian Shi ◽  
...  

Aim at the problem of machining integral impeller, a method of using finite element theory to carry out the statics analysis of impeller in this paper is studied. The finite element model is established, and then the nephogram of the impeller stress, strain and total deformation are obtained. The result is attained: in the case of impeller rotation and statics load, the maximum of stress and strain occur at the root of suction surface, the maximum of total deformation occurs on the blade tip position of suction surface, while the maximum deformation position has not changed, which increases with the increasing of rotation and statics load. The data results provide a theoretical reference for the machining of integral impeller.


2012 ◽  
Vol 04 (01) ◽  
pp. 1250010 ◽  
Author(s):  
V. P. VALLALA ◽  
G. S. PAYETTE ◽  
J. N. REDDY

In this paper, a finite element model for efficient nonlinear analysis of the mechanical response of viscoelastic beams is presented. The principle of virtual work is utilized in conjunction with the third-order beam theory to develop displacement-based, weak-form Galerkin finite element model for both quasi-static and fully-transient analysis. The displacement field is assumed such that the third-order beam theory admits C0 Lagrange interpolation of all dependent variables and the constitutive equation can be that of an isotropic material. Also, higher-order interpolation functions of spectral/hp type are employed to efficiently eliminate numerical locking. The mechanical properties are considered to be linear viscoelastic while the beam may undergo von Kármán nonlinear geometric deformations. The constitutive equations are modeled using Prony exponential series with general n-parameter Kelvin chain as its mechanical analogy for quasi-static cases and a simple two-element Maxwell model for dynamic cases. The fully discretized finite element equations are obtained by approximating the convolution integrals from the viscous part of the constitutive relations using a trapezoidal rule. A two-point recurrence scheme is developed that uses the approximation of relaxation moduli with Prony series. This necessitates the data storage for only the last time step and not for the entire deformation history.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042093648
Author(s):  
Liansen Sha ◽  
Andi Lin ◽  
Xinqiao Zhao ◽  
Shaolong Kuang

Topology optimization is a widely used lightweight design method for structural design of the collaborative robot. In this article, a topology optimization method for the robot lightweight design is proposed based on finite element analysis of the assembly so as to get the minimized weight and to avoid the stress analysis distortion phenomenon that compared the conventional topology optimization method by adding equivalent confining forces at the analyzed part’s boundary. For this method, the stress and deformation of the robot’s parts are calculated based on the finite element analysis of the assembly model. Then, the structure of the parts is redesigned with the goal of minimized mass and the constraint of maximum displacement of the robot’s end by topology optimization. The proposed method has the advantages of a better lightweight effect compared with the conventional one, which is demonstrated by a simple two-linkage robot lightweight design. Finally, the method is applied on a 5 degree of freedom upper-limb exoskeleton robot for lightweight design. Results show that there is a 10.4% reduction of the mass compared with the conventional method.


2017 ◽  
Vol 89 (2) ◽  
pp. 274-279
Author(s):  
Thomas Wright ◽  
Imran Hyder ◽  
Mitchell Daniels ◽  
David Kim ◽  
John P. Parmigiani

Purpose The purpose of this paper is to determine which of the ten material properties of the Hashin progressive damage model significantly affect the maximum load-carrying ability of center-notched carbon fiber panels under in-plane tension and out-of-plane bending. Design/methodology/approach The approach used is to calculate the maximum load using a finite element model for a range of material property values as specified by a fraction factorial design. The finite element model used has been experimentally validated in prior work. Findings Results showed that for the laminates considered, at most three and as few as one of the ten Hashin material properties significantly affected the magnitude of the maximum load. Practical implications While the results of this paper only specifically apply to the laminates included in the study, the results suggest that, in general, only a small number of the Hashin material properties affect laminate load-carrying ability. Originality/value Knowing which properties are significant is of value in selecting materials to optimize performance and also in determining which properties need to be known to a high accuracy.


2006 ◽  
Vol 324-325 ◽  
pp. 699-702 ◽  
Author(s):  
Il Kwon Oh ◽  
Tai Hong Cheng

Based on full layerwise displacement shell theory, the vibration and damping characteristics of cylindrical sandwiched panels with viscoelastic layers are investigated. The transverse shear deformation and the normal strain of the cylindrical hybrid panels are fully taken into account for the structural damping modeling. The layerwise finite element model is formulated by using Hamilton’s virtual work principle and the cylindrical curvature of hybrid panels is exactly modeled. Modal loss factor and frequency response functions are analyzed for various structural parameters of cylindrical sandwich panels. Present results show that the full layerwise finite element method can accurately predict the vibration and damping characteristics of the cylindrical hybrid panels with surface damping treatments and constrained layer damping.


2000 ◽  
Vol 27 (4) ◽  
pp. 785-797 ◽  
Author(s):  
Z W Guan ◽  
P D Rodd

Brittle premature failure caused by splitting parallel to the timber grain is a common failure mode in glulam joints made with solid dowel type fasteners. It is thought that this problem can be alleviated by using hollow steel dowels as the fasteners and reinforcing the timber locally in the area of the joint. In this way, by varying the wall thickness of the dowels and the thickness of the reinforcing members, a chosen combination of strength and stiffness should be attainable together with a ductile failure mode. In this paper, three-dimensional nonlinear finite element models are developed to simulate (i) the structural performance of a timber joint made with a single hollow steel dowel and (ii) a moment transmitting joint made with a number of the dowels, each type being locally reinforced by densified veneer wood. The models incorporate suitably defined elastoplasticity and orthotropic elasticity and also allow for large deformations of the joints as well as for frictional contact between the timber and the dowel. They are calibrated against physical test data from joints loaded to failure.Key words: glulam, densified veneer wood, resin injected, hollow dowel fastener, moment transmitting, ductile failure, finite element.


Sign in / Sign up

Export Citation Format

Share Document