Synthesis and Thermal Analysis of C16H13N5O3 and its Complexes with Rare Earth

2013 ◽  
Vol 749 ◽  
pp. 521-526
Author(s):  
Si Jiao Wang ◽  
Xiang Rong Liu ◽  
Chao Chao Song ◽  
Shun Shen Zhao ◽  
Lan Ying Yan ◽  
...  

The 2-carboxybenzaldehyde-1H-benzotriazol-1-aceylhydrazone (C16H13N5O3) has been synthesized and used in preparing thirteen novel rare earth complexes. The complexes were characterized by elemental analysis, FT-IR, and UV-Vis, and the formula is RE (C16H11N5O3)·NO3·xH2O·yC2H5OH (RE=La, Ce, Pr, Nd, Sm, Eu, Tb, Ho, Er, Yb) and RE(C16H12N5O3)2·NO3·5H2O (RE=Gd, Dy, Y) .The thermal decomposition processes of the thirteen complexes were studied by thermal gravimetric technology and their apparent activation energy values were calculated by Kissingers and Ozawass method.

2013 ◽  
Vol 328 ◽  
pp. 724-728 ◽  
Author(s):  
Dong Mei Wang ◽  
Wen Bo Cao ◽  
Jian Fan

Tb-MA-Phen mononuclear rare earth complexes were prepared. The structure and properties of the complexes were characterized by elemental analysis, FT-IR and UV, TA, X-ray powder diffraction and SEM. Moreover, the rare earth ions were doped into the polymer matrix using the combinatorial method. High luminescence copolymer was synthesized by polymerizing α-methyl methyacrylate (MA) and Styrene (St) with terbium-methacrylate complex in solution with AIBN as initiator, respectively.


2013 ◽  
Vol 641-642 ◽  
pp. 144-147 ◽  
Author(s):  
Ming Hua Chen ◽  
Tao Zhang ◽  
Wen Ping Chang ◽  
Xiao Biao Jia

The thermal decomposition kinetics of RDX at different rates was studied by thermogravimetric analyzer(TG) and the activation energy of RDX was calculated by distributed activation energy model. It is shown that the thermal decomposition processes of RDX were divided into three stages according to the TG curves, they are molten stage, thermal decomposition stage and eng stage. The activation energies of RDX are all between 124.34 and 181.48KJ•mol-1 in the thermal decomposition stage of non-monotonously increasing. The activation energy of RDX is 139.98 KJ•mol-1 in the molten stage, and the thermal decomposition stage is167.24KJ•mol-1.


2011 ◽  
Vol 228-229 ◽  
pp. 919-924 ◽  
Author(s):  
Feng Yuan Huang

Cellulose Stearate (CS) was synthesized by acylating microcrystalline cellulose (MCC) in homogeneous system with p-toluenesulfonyl chloride (Tos-Cl) and stearic acid (SA). The reactive conditions were discussed. The molar ratio of AGU:SA:Tos-Cl was the key factor which affected the degree of substitution (DS) of CS. In the present paper, CSs with DS ranging from 0.64 to 2.35 were prepared under mild condition. The structure of CS was characterized by FT-IR and 1H-NMR, and DS of CS was determined by traditional saponification method and 1H-NMR, respectively. The solubility of CS was also investigated; the results showed that the higher DS of CS was, the easier CS dissolved in organic solvents. The thermal analysis was measured with DSC, and the results indicated that the glass transition temperature (Tg) and the maximum temperature of thermal decomposition (Tmax) of CS were dependent on DS.


Holzforschung ◽  
2017 ◽  
Vol 71 (3) ◽  
pp. 233-240 ◽  
Author(s):  
Ke-Chang Hung ◽  
Jyh-Horng Wu

Abstract Wood-SiO2 composites (WSiO2Cs) were prepared by means of the sol-gel process with methyltrimethoxysilane (MTMOS) as a reagent, and the physical properties, structure and thermal decomposition kinetics of the composites has been evaluated. The dimensional stability of the WSiO2Cs was better than that of unmodified wood, especially in terms of the weight percent gain (WPG), which achieved values up to 30%. The 29Si-NMR spectra show two different siloxane peaks (T2 and T3), which supports the theory about the formation of MTMOS network structures. Thermal decomposition experiments were also carried out in a TG analyzer under a nitrogen atmosphere. The apparent activation energy was determined according to the iso-conversional methods of Friedman, Flynn-Wall-Ozawa, modified Coats-Redfern, and Starink. The apparent activation energy between 10 and 70% conversion is 147–172, 170–291, 189–251, and 192–248 kJ mol−1 for wood and WSiO2Cs with WPGs of 10, 20, and 30%, respectively. However, the reaction order between 10 and 70% conversion calculated by the Avrami theory was 0.50–0.56, 0.35–0.45, 0.33–0.44, and 0.28–0.48. These results indicate that the dimensional and thermal stability of the wood could be effectively enhanced by MTMOS treatment.


2008 ◽  
Vol 368-372 ◽  
pp. 604-606 ◽  
Author(s):  
Wei Zhong Lv ◽  
Zhong Kuang Luo ◽  
Bo Liu ◽  
Xiang Zhong Ren ◽  
Hong Hua Cai ◽  
...  

Copper ferrite powders were successfully synthesized by sonochemical method. The resultant powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), FT-IR, differential thermal analysis-thermal gravimetric (DTA-TG), differential scanning calorimetry (DSC) and VSM. The particle saturation magnetization (Ms) is 66 emu/g and an intrinsic coercive force (iHc) is 2100 Oe when the precursor calcined at 950 °C for 15 h.


1968 ◽  
Vol 46 (2) ◽  
pp. 257-265 ◽  
Author(s):  
K. C. Patil ◽  
G. V. Chandrashekhar ◽  
M. V. George ◽  
C. N. R. Rao

The infrared spectra of rare earth acetates have been studied to examine the metal-acetate bonding. The thermal decomposition of rare earth acetates as well as lead and copper acetates have been investigated in detail by employing thermogravimetric analysis and differential thermal analysis. Thermal decomposition of calcium dicarboxylates (malonate to sebacate) have been studied employing t.g.a. and d.t.a. Infrared spectra of the dicarboxylates have also been studied. Preliminary results on the products of decomposition of dicarboxylates have been reported.


2017 ◽  
Vol 79 (5) ◽  
Author(s):  
Josephine Chang Hui Lai ◽  
Md. Rezaur Rahman ◽  
Sinin Hamdan

Styrene-co-glycidyl methacrylate-fumed silica-clay (ST-co-GMA-fsi-clay) nanocomposites have been prepared via free radical polymerization in the presence of benzoyl peroxide. The nanocomposites are characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), adsorption isotherm, tensile test, thermogravimetric analysis (TGA) and moisture absorption. FT-IR shows the Si-O-C peak that represented ST-co-GMA-fsi bonding while Si-O-Si peak shows the bonding of fsi-clay. The surface morphology shows the well dispersion of clay (1.30E) into ST-co-GMA-fsi nanocomposite. 2wt% of ST-co-GMA-fsi-clay (1.30E) nanocomposite has higher specific surface area and average pore volume with less pore size. Incorporation of 2wt% of clay (1.30E) improves the tensile strength and modulus of the nanocomposites as well as higher thermal stability and activation energy. 2wt% of ST-co-GMA-fsi-clay (1.30E) nanocomposite shows the lowest moisture absorption value.  


Sign in / Sign up

Export Citation Format

Share Document