Microstructure and Erosion Resistance of Hot-Dip-Aluminized 3Cr13 Steel

2013 ◽  
Vol 750-752 ◽  
pp. 2008-2011
Author(s):  
Zhi Gang Zhao ◽  
Xiu Lin Ji ◽  
Hai Shuai Wang ◽  
Shu Qi Wang

Fe-Al intermetallic coating was prepared on 3Cr13 steel by hot-dip aluminizing and diffusion process. The morphology and phase of the coating were analyzed; the erosion behavior of hot-dip-aluminized 3Cr13 steel was investigated. Results showed that the thickness of the coating increased with diffusion temperature, but decreased when diffusion temperature exceeded 800°C. The Fe-Al alloy layer diffused at 900°C presented compacted microstructure, and mainly contained FeAl and a few Fe3Al. Fe-Al intermetallic coating possessed obviously declined erosion loss compared with unaluminized 3Cr13 steel and represented typical erosion characteristics of ductile material.

2019 ◽  
Vol 26 (10) ◽  
pp. 1950070
Author(s):  
YUWEN DING ◽  
XIAOCHUN CHEN ◽  
YA LIU ◽  
XUPING SU

Aluminized steels possess excellent corrosion resistance due to the formation of Al-Fe solution phases and intermetallic compounds in coatings. Ni was added to baths to further improve the corrosion resistance of the coatings at high temperature. Here, the role of Ni in the formation of coatings and the effect of diffusion process on the developing of coatings were investigated. 45 steels were immersed in Al-Ni baths (Al-1mass% Ni, Al-3mass% Ni, and Al-5mass% Ni) and diffusion-treated at 1023 and 1123[Formula: see text]K for 20, 40 and 100[Formula: see text]min, respectively. The coatings of samples were analyzed via scanning electron microscopy (SEM) along with energy-dispersive X-ray spectroscopy (EDS). X-ray diffraction (XRD) was further used to confirm the types of phases that formed during diffusion treatment. The formations of intermetallic coating layers were also analyzed via the diffusion path. More continuous Al3Ni layer and compact coating were obtained with diffusion treatment at 1023[Formula: see text]K for 40[Formula: see text]min.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Y. M. Abd-Elrhman ◽  
A. Abouel-Kasem ◽  
K. M. Emara ◽  
S. M. Ahmed

The paper reports the influence of carburizing on the slurry erosion behavior of AISI 5117 steel using a whirling-arm rig. The microstructure and hardness profile of the surface layer of carburized steel were investigated. For characterizing the slurry damage process and for better understanding of material removal at different angles, scanning electron microscope (SEM) images at different locations on eroded surface using stepwise erosion combined with relocation SEM were presented. The study is also focused on studying the erosion wear resistance properties of AISI 5117 steel after carburizing at different impact angles. The tests were carried out with particle concentration of 1 wt. %, and the impact velocity of slurry stream was 15 m/s. Silica sand has a nominal size range of 250 – 355 μm was used as an erodent. The results showed that, carburizing process of steel increased the erosion resistance and hardness compared with untreated material for all impact angles. The erosion resistance of AISI 5117 steel increases by 75%, 61%, 33%, 10% at an impact angle of 30 deg, 45 deg, 60 deg, and 90 deg, respectively, as result of carburizing, i.e., the effectiveness of carburizing was the highest at low impact angles. Treated and untreated specimens behaved as ductile material, and the maximum mass loss appeared at impact angle of 45 deg. Plough grooves and cutting lips appeared for acute impact angle, but the material extrusions were for normal impact angles. The erosion traces were wider and deeper for untreated specimens comparing by the shallower and superficial ones for the carburized specimens. Chipping of the former impact sites by subsequent impact particles plays an important role in developing erosion.


2017 ◽  
Vol 24 (Supp01) ◽  
pp. 1850010
Author(s):  
LIU LIANG ◽  
YA-LING LIU ◽  
YA LIU ◽  
HAO-PING PENG ◽  
JIAN-HUA WANG ◽  
...  

Fe/(Zn–6%Al–[Formula: see text]%Mg) solid–liquid diffusion couples were kept at various temperatures for different periods of time to investigate the formation and growth of the Fe–Al alloy layer. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD) were used to study the constituents and morphology of the Fe–Al alloy layer. It was found that the Fe2Al5Znxphase layer forms close to the iron sheet and the FeAl3Znxphase layer forms near the side of the melted Zn–6%Al–3%Mg in diffusion couples. When the Fe/(Zn–6%Al–3%Mg) diffusion couple is kept at 510[Formula: see text]C for more than 15[Formula: see text]min, a continuous Fe–Al alloy layer is formed on the interface of the diffusion couple. Among all Fe/(Zn–6%Al–[Formula: see text]%Mg) solid–liquid diffusion couples, the Fe–Al alloy layer on the interface of the Fe/(Zn–6% Al–3% Mg) diffusion couple is the thinnest. The Fe–Al alloy layer forms only when the diffusion temperature is above 475[Formula: see text]. These results show that the Fe–Al alloy layer in Fe/(Zn–6%Al–[Formula: see text]%Mg) solid–liquid diffusion couples is composed of Fe2Al5Znxand FeAl3Znxphase layers. Increasing the diffusing temperature and time period would promote the formation and growth of the Fe–Al alloy layer. When the Mg content in the Fe/(Zn–6%Al–[Formula: see text]%Mg) diffusion couples is 3%, the growth of the Fe–Al alloy layer is inhibited. These results may explain why there is no obvious Fe–Al alloy layer formed on the interface of steel with a Zn–6%Al–3%Mg coating.


2014 ◽  
Vol 24 (8) ◽  
pp. 1868-1884 ◽  
Author(s):  
Xing-Yao YANG ◽  
Jiong YU ◽  
IBRAHIM Turgun ◽  
Bin LIAO ◽  
Yu-Rong QIAN

2012 ◽  
Vol 80 ◽  
pp. 175-177 ◽  
Author(s):  
Huibin Liu ◽  
Xinhua Pan ◽  
Ping Ding ◽  
Zhizhen Ye ◽  
Haiping He ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dingjun Li ◽  
Peng Jiang ◽  
Fan Sun ◽  
Xiaohu Yuan ◽  
Jianpu Zhang ◽  
...  

Abstract The water-droplet erosion of low-pressure steam turbine blades under wet steam environments can alter the vibration characteristics of the blade, and lead to its premature failure. Using high-velocity oxygen-fuel (HVOF) sprayed water-droplet erosion resistant coating is beneficial in preventing the erosion failure, while the erosion behavior of such coatings is still not revealed so far. Here, we examined the water-droplet erosion resistance of Cr3C2–25NiCr and WC–10Co–4Cr HVOF sprayed coatings using a pulsed water jet device with different impingement angles. Combined with microscopic characterization, indentation, and adhesion tests, we found that: (1) both of the coatings exhibited a similar three-stage erosion behavior, from the formation of discrete erosion surface cavities and continuous grooves to the broadening and deepening of the groove, (2) the erosion rate accelerates with the increasing impingement angle of the water jet; besides, the impingement angle had a nonlinear effect on the cumulative mass loss, and 30° sample exhibited the smallest mass loss per unit area (3) an improvement in the interfacial adhesion strength, fracture toughness, and hardness of the coating enhanced the water-droplet erosion resistance. These results provide guidance pertaining to the engineering application of water erosion protective coatings on steam turbine blades.


2021 ◽  
Vol 66 (1) ◽  
pp. 42-48
Author(s):  
Kien Pham Huu ◽  
Linh Nguyen Hong ◽  
Hien Pham Xuan ◽  
Linh Nguyen Thi Thuy ◽  
Quang Phan Dinh ◽  
...  

In this paper, we perform a simulation about liquid GeO2. The structure and diffusion process are analyzed through the radial distribution function, the distribution of GeOx (x = 4, 5, 6) structural units, length distribution, angle distribution, and data visualization. Simulation results show that the structure of liquid GeO2 composes clusters of GeO4, GeO5, or GeO6. These clusters have sizes depending on pressure and are distributed heterogeneously in space. This result confirms the origin of dynamical heterogeneity in the liquid oxide systems. In addition, the diffusion coefficient of Ge and O decreases upon pressure. We show that the diffusion relates to the breaking bond Ge-O.


2015 ◽  
Vol 60 (3) ◽  
pp. 2367-2372 ◽  
Author(s):  
J. Szajnar ◽  
A. Dulska ◽  
T. Wróbel ◽  
C. Baron

Abstract A description of alloy layer formation on a steel substrate is presented. Two types of formation are considered: diffusion of carbon and chromium into the solid from the pad in the direction of the cast steel within the FeCrC (grains) and diffusion in a layer of liquid chromium cast iron formed in a preceding step. The influence of silicon in the pad on the pad’s transformation into the liquid is also examined. Solidus and liquidus temperatures of high carbon ferrochromium are determined. The larger the content of Si is used in the experiment, the lower the solidus temperature of the FeCrC alloy is observed. This results from the higher intensity of the elements’ diffusion and faster formation of the liquid.


Sign in / Sign up

Export Citation Format

Share Document