Preparation of WS2/MoS2/C Composite Films and their Tribological Properties

2009 ◽  
Vol 79-82 ◽  
pp. 711-714
Author(s):  
Lei Zhou ◽  
Gui Lin Yin ◽  
Yu Dong Wang ◽  
Zhen Yu ◽  
Dan Nong He

WS2/MoS2/C composite lubricating films were prepared in an Ar/C2H2 atmosphere by magnetron reaction-sputtering using a WS2/MoS2 composite target. The relationship between the microstructure and the tribological performance of the films was investigated. The composite film has a compact microstructure, which is shown to have much superior tribological performance with lower friction coefficient and better wear resistance than pure MoS2 film in humid atmospheric conditions at room temperature. An increase in hardness of nearly one order of magnitude was reached, too.

2006 ◽  
Vol 514-516 ◽  
pp. 687-691 ◽  
Author(s):  
Manuel Evaristo ◽  
Ana Nossa ◽  
Albano Cavaleiro

In this work, W-S-Ti films were deposited by r.f. magnetron sputtering, using simultaneously WS2 and Ti targets. The atomic percentage of Ti in the coating was varied from 0 at.% up to 28 at.%. No significant variations in the S/W ratio with the increase of Ti content were observed. The increasing Ti contents in the films led to a gradual loss of crystallinity. Coatings with contents greater than ≈ 16 at.% only presents a broad peak characteristic of amorphous structures. Alloying the films with Ti led to significant improvements in the hardness (from 0.3 to 8.9 GPa). Also, the adhesive critical load continuously grew with the increase of the Ti content in the films. The wear coefficient of the films dropped more than one order of magnitude with the increase of Ti content whereas the friction coefficient was kept fairly constant with just a small increase in relation to single W-S film. In conclusion, to have a good tribological performance, the addition of Ti to the films should be balanced in order that the increase of the mechanical properties does not lead to severe loss of the self-lubricant properties.


2016 ◽  
Vol 53 (1) ◽  
pp. 66-74
Author(s):  
J. Lungevics ◽  
A. Leitans ◽  
J. Rudzitis ◽  
N. Bulahs ◽  
P. Nazarovs ◽  
...  

Abstract Carbon-copper composite coatings reinforced with titanium were deposited using high power magnetron sputtering technique. Tribological and metrological tests were performed using Taylor Hobson Talysurf Intra 50 measuring equipment and CSM Instruments ball-on-disk type tribometer. Friction coefficient and wear rate were determined at 2N, 4N, 6N loads. It was revealed that friction coefficient decreased at a higher Ti concentration, which was particularly expressed at bigger applied loads. However, wear volume values tended to increase in the beginning, till Ti concentration reached about 11 %, but then decreased, thus providing better nanocoating wear resistance.


2013 ◽  
Vol 749 ◽  
pp. 187-191 ◽  
Author(s):  
Hong Zhang ◽  
Kai Xuan Gu ◽  
Jia Guo ◽  
Xiao Dai Xue ◽  
Jun Jie Wang

The effect of cryogenic treatment on mechanical properties and wear resistance at room temperature of 06Cr19Ni10 austenitic stainless steel was studied in the present study. The cryogenic treatment process was carried out at-160 and different time in program-controlled cryogenic container. The results showed that, after cryogenic treatment, the room-temperature mechanical properties of the 06Cr19Ni10 steel remained stable without embrittlement, friction coefficient of the 06Cr19Ni10 steel decreased and the wear resistance improved after cryogenic treatment. When cryogenic treatment was treated at-160 for two hours and thirty minutes, the friction coefficient of the 06Cr19Ni10 steel was the smallest and wear resistance was the best.


2021 ◽  
Author(s):  
Weimin Li ◽  
Huaigang Su ◽  
Yunlong Chen ◽  
Rui Ma ◽  
Gaiqing Zhao ◽  
...  

Abstract The tribological behavior of boundary lubrication is largely dominated by the anti-wear additives. Here five different anti-wear additives were selected and their tribological properties for a steel-copper contact were investigated. It was found that the tribological performance are highly depending on the anti-wear additive chemistry which determines activity, element compositions of the additive. An amine phosphate anti-wear additive AW 316 exhibit best tribological performance with the lowest mean friction coefficient of 0.082 and smallest wear volume which is more than one order of magnitude smaller than base oil. The friction-reducing order of the tested anti-wear additives are AW 316 > ZDDP > 353 > TCP > [P8888][DEHP] while anti-wear showed similar trend. In addition, the tribological mechanism of AW 316 were also discussed based on surface analysis results, and it was found that an even boundary lubrication film of 10–15 nm which was composed of copper oxides, phosphates, amines was formed on the copper disc and is responsible for its outstanding tribological performances. This study provides fundamental insights of the compatibilities among steel-copper friction pairs and suitable anti-wear additives, which can be beneficial for the development of high performance used for steel-copper friction pairs.


Author(s):  
Lei Zhang ◽  
Minli Zheng ◽  
Wei Zhang ◽  
Kangning Li

Abstract In the field of mold manufacturing, the wear resistance of the mold is a key factor affecting the life of the mold. In order to extend the life of the mold, most scholars have invested a lot of research on the surface texture of the mold. This article mainly analyzes the influence of the texture angle of different milling topography on the wear resistance of the mold. First, we studied the formation process of the milling topography, and distinguished the quadrilateral pit topography and the hexagonal pit topography by defining the texture angle. Secondly, we carried out a wear simulation analysis on the slider with a texture angle, and studied the influence of different topography on the wear depth and stress distribution. Finally, with the help of friction and wear experiments, the wear amount of the slider with different texture angles is tested, and the relationship between the texture angle, the wear quality and the friction coefficient is analyzed. The conclusions obtained provide an effective reference for industrial designers to prepare wear-resistant molds.


2008 ◽  
Vol 403 ◽  
pp. 115-116
Author(s):  
Qian Liu ◽  
Lin Hua Gui ◽  
Jun Hu Meng ◽  
Zhi Feng Li

A considerable test was made to figure out the effects of temperature and sliding conditions on the wear properties of the translucent Dy--Sialon. The friction coefficient was 0.54 at RT, 0.26 at 100 oC, and 0.81 at 600 oC respectively under an applied load of 5N. The wear rate was 6.91×10-15 at RT and 1.0×10-15 at 100 oC for the same Dy--Sialon sample. Obviously Dy-Sialon shows an excellent wear resistance under a suitable sliding condition, a load of 5N and at 100 oC. This appears attractive and important for Dy-Sialon ceramics to be used as a type of special wear resistant materials, with an optical translucence.


Author(s):  
Kazuhito Sagara ◽  
Mineo Suzuki ◽  
Makoto Nishimura

Sputtered MoS2 films deposited on SUS440C stainless steel disks were stored in a desiccator or in a vacuum of 10−5Pa to examine the effect of aging on their tribological performance. Five years’ storage in a desiccator (25%±5%RH, room temperature) elongated the wear life in a vacuum of sputtered MoS2 films in average by a factor of four. A sputtered MoS2 film stored in a vacuum for seven years showed tenfold increase in wear life when tested in a vacuum.


2007 ◽  
Vol 353-358 ◽  
pp. 1580-1583
Author(s):  
Han Ning Xiao ◽  
Ji Xiang Yin ◽  
Tetsuya Senda

Friction and wear tests of TiB2 sliding against SiC were conducted without lubricant from room temperature to 1200°C in air and in vacuum. The friction coefficient of the couple of TiB2/SiC is affected obviously by the oxidation of TiB2. It increases with the increase of temperature and reaches a maximum at some temperature in air, then decreases remarkably. The friction coefficient of TiB2/SiC in vacuum exhibites almost a constant and keeps smaller value than that in air. Transition of TiB2 onto the sliding surface of SiC was observed, which improved the wear resistance of SiC at high temperatures.


Author(s):  
A. Leitans ◽  
N. Bulaha ◽  
J. Lungevics

Carbon-copper composite coatings were deposited using high power magnetron sputtering technique. Tribological tests were performed using ball-on-disk type tribometer. Friction coefficient and wear rate were determined at 40 N load. It was found that an increase in the percentage composition of carbon in C-Cu coating, reduces the coefficient of friction value. But at higher concentrations of C coating it becomes more brittle, that reduces wear resistance.


2016 ◽  
Vol 78 (10-3) ◽  
Author(s):  
Nor Azmmi Masripan ◽  
Yosuke Tsukiyama ◽  
Kenji Ohara ◽  
Noritsugu Umehara ◽  
Hiroyuki Kousaka ◽  
...  

Diamond-like carbon (DLC) provide very excellence performance in term of friction coefficient and wear resistance under boundary   lubrication. the  nano characteristic of the transformed  layer has not  been studied  in terms  of its  hardness  which is believed to  have a significant  effect in the tribological  performance. This study presented the scratch test of the DLC transformed layer was obtained from the AFM scratch test that governs the friction behavior of DLC. As a result, the hardness of the DLC transformed layer depends on the oil temperature, where the sliding interface of DLC softened during the friction test due to graphitization process


Sign in / Sign up

Export Citation Format

Share Document