Research on Friction and Wear Characteristics Based on Different Texture Angles of Milling Topography

Author(s):  
Lei Zhang ◽  
Minli Zheng ◽  
Wei Zhang ◽  
Kangning Li

Abstract In the field of mold manufacturing, the wear resistance of the mold is a key factor affecting the life of the mold. In order to extend the life of the mold, most scholars have invested a lot of research on the surface texture of the mold. This article mainly analyzes the influence of the texture angle of different milling topography on the wear resistance of the mold. First, we studied the formation process of the milling topography, and distinguished the quadrilateral pit topography and the hexagonal pit topography by defining the texture angle. Secondly, we carried out a wear simulation analysis on the slider with a texture angle, and studied the influence of different topography on the wear depth and stress distribution. Finally, with the help of friction and wear experiments, the wear amount of the slider with different texture angles is tested, and the relationship between the texture angle, the wear quality and the friction coefficient is analyzed. The conclusions obtained provide an effective reference for industrial designers to prepare wear-resistant molds.

2012 ◽  
Vol 503-504 ◽  
pp. 601-605
Author(s):  
Wen Yan Wang ◽  
Gao Lu ◽  
Jing Pei Xie ◽  
Jia Xi Wang

In this research, different frictions were settled to study the wear resistance of HT250, RuT15, RuT75 and QT500 according to the wear failure situation in automobile brake drum. And the relationship between wear mechanism, microstructure and mechanical properties were discussed. It can be seen from the friction and wear experiment that, under different friction and wear conditions, both of RuT35 and QT500 have the best wear resistance property while HT250 has the worst wear resistance property. With the increase of lord, the brake torque and friction coefficient of RuT35 stays unchangeable, showing well brake ability. With the increase of lord, the brake ability of HT250 was getting better, while QT500 showing the opposite. SEM was used to analyze the wear morphology, the results show that: the abrasive wear and adhesion wear are presented mainly. HT250 has a bad surface quality while QT500 and RuT15 have a bad surface quality. Generally speaking, RuT15 is the best material to made brake drum, in the consideration of were resistance and braking stability.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1153
Author(s):  
Ivan Pavlenko ◽  
Jozef Zajac ◽  
Nadiia Kharchenko ◽  
Ján Duplák ◽  
Vitalii Ivanov ◽  
...  

This article deals with improving the wear resistance of multilayer coatings as a fundamental problem in metal surface treatment, strengthening elements of cutting tools, and ensuring the reliability of machine parts. It aims to evaluate the wear depth for multilayer coatings by the mass loss distribution in layers. The article’s primary purpose is to develop a mathematical method for assessing the value of wear for multilayer steel-based coatings. The study material is a multilayer coating applied to steel DIN C80W1. The research was performed using up-to-date laboratory equipment. Nitrogenchroming has been realized under overpressure in two successive stages: nitriding for 36 h at temperature 540 °C and chromizing during 4 h at temperature 1050 °C. The complex analysis included several options: X-ray phase analysis, local micro-X-ray spectral analysis, durometric analysis, and determination of wear resistance. These analyses showed that after nitrogenchroming, the three-layer protective coating from Cr23C6, Cr7C3, and Cr2N was formed on the steel surface. Spectral analysis indicated that the maximum amount of chromium 92.2% is in the first layer from Cr23C6. The maximum amount of carbon 8.9% characterizes the layer from Cr7C3. Nitrogen is concentrated mainly in the Cr2N layer, and its maximum amount is 9.4%. Additionally, it was determined that the minimum wear is typical for steel DIN C80W1 after nitrogenchroming. The weight loss of steel samples by 25 mg was obtained. This value differs by 3.6% from the results evaluated analytically using the developed mathematical model of wear of multilayer coatings after complex metallization of steel DIN C80W1. As a result, the impact of the loading mode on the wear intensity of steel was established. As the loading time increases, the friction coefficient of the coated samples decreases. Among the studied samples, plates from steel DIN C80W1 have the lowest friction coefficient after nitrogenchroming. Additionally, a linear dependence of the mass losses on the wearing time was obtained for carbide and nitride coatings. Finally, an increase in loading time leads to an increase in the wear intensity of steels after nitrogenchroming. The achieved scientific results are applicable in developing methods of chemical-thermal treatment, improving the wear resistance of multilayer coatings, and strengthening highly loaded machine parts and cutting tools.


2011 ◽  
Vol 80-81 ◽  
pp. 60-63
Author(s):  
Xue Qing Yue ◽  
Hua Wang ◽  
Shu Ying Wang

Incorporation of metallic elements, titanium and copper, into carbonaceous mesophase (CM) was performed through mechanical alloying in a ball mill apparatus. The structures of the raw CM as well as the Ti/Cu-added CM were characterized by X-ray diffraction. The tribological behavior of the Ti/Cu-added CM used as lubricating additives was investigated by using a high temperature friction and wear tester. The results show that, compared with the raw CM, the Ti/Cu-added CM exhibits a drop in the crystallinity and a transition to the amorphous. The Ti/Cu-added CM used as lubricating additive displays an obvious high temperature anti-friction and wear resistance effect, and the lager the applied load, the lower the friction coefficient and the wear severity.


Author(s):  
В.Ю. Фоминский ◽  
В.Н. Неволин ◽  
Д.В. Фоминский ◽  
Р.И. Романов ◽  
М.Д. Грицкевич

The results of a comparative study of the friction and wear of MoSx and MoSex thin film coatings that was carried out in an oxidizing medium (a mixture of argon and air) at a temperature of -100°C are presented. The films were obtained by pulsed laser deposition from MoS2, MoSe2, and Mo targets in vacuum and H2S. It was established that Se-containing coatings significantly exceeded the S-containing coatings in terms of wear resistance and provided a friction coefficient of ~ 0.09. The properties of MoSx films depended on the S concentration, which determines the local packing of atoms in the amorphous structure of the film. The coefficient of friction for MoS3 films after running-in turned out to be half as much as that for MoS2 films, and its value was 0.08.


2021 ◽  
Vol 1016 ◽  
pp. 1235-1239
Author(s):  
Eleonora Santecchia ◽  
Marcello Cabibbo ◽  
Abdel Magid S. Hamouda ◽  
Farayi Musharavati ◽  
Anton Popelka ◽  
...  

The properties of anodized aluminum, and wear resistance in particular, are of high interest for the scientific community. In this study, discs of AA6082 were subjected to a peculiar hard anodizing process leading to anodized samples having different thicknesses. In order to investigate the wear mechanism of samples, unidirectional tribological tests were performed against alumina balls (corundum) under different loading conditions. Surface and microstructure of all the samples were characterized before and after the tribological tests, using different characterization techniques. The tribological tests showed remarkable differences in the friction coefficient and wear behavior of the anodized AA6082 samples, related to the microstructure modifications and to the specific applied sliding conditions.


2009 ◽  
Vol 79-82 ◽  
pp. 711-714
Author(s):  
Lei Zhou ◽  
Gui Lin Yin ◽  
Yu Dong Wang ◽  
Zhen Yu ◽  
Dan Nong He

WS2/MoS2/C composite lubricating films were prepared in an Ar/C2H2 atmosphere by magnetron reaction-sputtering using a WS2/MoS2 composite target. The relationship between the microstructure and the tribological performance of the films was investigated. The composite film has a compact microstructure, which is shown to have much superior tribological performance with lower friction coefficient and better wear resistance than pure MoS2 film in humid atmospheric conditions at room temperature. An increase in hardness of nearly one order of magnitude was reached, too.


2007 ◽  
Vol 351 ◽  
pp. 75-80
Author(s):  
Rong Chen ◽  
Hong Hua Wang ◽  
Di Zhang ◽  
Guo Ding Zhang

Fretting friction and wear of aluminum alloy, 5 and 10 vol.% SiCp/Al and Ni3Alp/Al composites under 5×10-4 Pa and atmosphere was investigated. Wear mechanism in vacuum was compared to that in atmosphere at different applied loads. The coefficient of friction (COF) of the SiCp/Al composites was larger than aluminum and Ni3Alp/Al composites, however, incorporation of SiC particles into Al alloy increased the fretting wear resistance of Al alloys, especially in vacuum. It should be notices that the maximum wear depth was larger in vacuum under fretting wear, and the Ni3Alp/Al composites show low fretting wear resistance.


2007 ◽  
Vol 14 (03) ◽  
pp. 489-497 ◽  
Author(s):  
B. F. YOUSIF ◽  
N. S. M. EL-TAYEB

In this work, tribological investigations on the neat polyester (NP) and woven (600 g/m2)-glass fabric reinforced polyester (WGRP) composite were carried out. Friction and wear characteristics of the WGRP composite were measured in three principal orientations, i.e., sliding directions relative to the woven glass fabric (WGF) orientations in the composites. These are longitudinal (L), transverse (T), and parallel (P) orientations. The experiments were conducted using a pin-on-disc (POD) machine under dry sliding conditions against a smooth stainless steel counterface. Results of friction coefficient and wear resistance of the composites were presented as function of normal loads (30–100 N) and sliding distances (0.5–7 km) at different sliding velocities, 1.7, 2.8, and 3.9 m/s. Scanning electron microscopy (SEM) was used to study the mechanisms of worn surfaces. Experimental results revealed that woven glass fabric improved the tribological performance of neat polyester in all three tested orientations. In L-orientation, at a low velocity of 1.7 m/s, WGRP exhibited significant improvements to wear resistance of the polyester composite compared to other orientations. Meanwhile, at high velocities (2.8 and 3.9 m/s), T-orientation gave higher wear resistance. SEM microphotographs showed different damage features on the worn surfaces, i.e., deformation, cracks, debonding of fiber, and microcracks.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1805
Author(s):  
Yu ◽  
Zhang ◽  
Tang ◽  
Gao

(1) In order to improve the properties of antifriction and wear resistance of polyimide (PI) composite under high temperature conditions, (2) 3-Aminopropyltriethoxysilane (APTES) and Lanthanum (La) salt modifications were employed to manufacture poly-p-phenylenebenzobisoxazole (PBO)/PI composites with different interface properties. The representative ambient temperatures of 130 and 260 °C were chosen to study the friction and wear behavior of composites with different interface properties. (3) Results revealed that while both modification methods can improve the chemical activity of the surface of PBO fibers, the La salt modification is more effective. The friction coefficient of all composites decreases with the increase of sliding velocity and load at two temperatures, and the specific wear rate is increases. Contrary to the situation in the 130 °C environment, the wear resistance of the unmodified composite in the 260 °C environment is greatly affected by the sliding velocity and load, while the modified composites are less affected. Under the same test parameters, the PBO–La/PI composite has the lowest specific wear rate and friction coefficient, and (4) La salt modification is a more effective approach to improve the properties of antifriction and wear resistance of PI composite than APTES modification in high ambient temperatures.


Author(s):  
Mohammad A Chowdhury ◽  
Bengir A Shuvho ◽  
Nayem Hossain ◽  
Mahamudul Hassan ◽  
Uttam K Debnath ◽  
...  

The friction and wear characteristics of stainless steel diffused with Si-based ceramics were investigated using pin-and-disc configuration under reciprocation motion, rotational motion, and simultaneous motion. The pin material was diffused by the combination of 60% Ti2O3, 30% Al2O3, and 10% Si2O3. Experiments have been carried out both in diffused and non-diffused conditions. Both the friction coefficient and wear rate have been possible to reduce by diffused pin material. The effects of both friction coefficient and wear rate have been studied on ceramics composites at different pin-and-disc motions. Experiments were conducted underpin motions of 0.15–0.25 m/s, disc motions of 0.5–0.6 m/s, and normal loads of 2.5–3.5 N. A relation was found among friction, wear and surface hardness of the composite. The friction coefficient and wear resistance were improved of stainless steel diffused with ceramics. Scanning electron microscopic analysis was performed to observe the morphology of ceramic and pin material.


Sign in / Sign up

Export Citation Format

Share Document