Zno Nanorod Synthesis via Controlled ZnO Seed Layer by Filtered Pulse Cathodic Vacuum Arc: Luminescence Enhancement

2013 ◽  
Vol 802 ◽  
pp. 1-6
Author(s):  
Anumut Deachana ◽  
Paul K. Chu ◽  
Dheerawan Boonyawan

A simple synthesis route to high-quality ZnO nanorod is reported, utilizing ZnO thin films grown by Filtered Pulse Cathodic Vacuum Arc (FPCVA) deposition as seed layers and continuous growth by hydrothermal method. Depending upon the FPCVA deposited conditions, implanted voltages, thickness and annealing temperature of ZnO seed layer, the surface morphology of the ZnO nanorod on ZnO film was noticeably different. The average diameters of the nanorod on Al substrates varied from about 131.99 ± 23.87 to 418.17 ±75.50 nm. The grown ZnO nanorod showed a high crystallinity with energy gap of 3.37 eV and low defect density confirmed by UV/VIS Spectrometer and photoluminescence spectrum (PL). Large-area growth, quasi-aligned and high quality indicates that the ZnO nanorods produced have potential application in field emission and optoelectronic devices.

2019 ◽  
Vol 290 ◽  
pp. 267-273
Author(s):  
Nama A. Hammed ◽  
Azlan Abdul Aziz ◽  
Adamu Ibrahim Usman

The role of both zinc oxide (ZnO) and zinc (Zn) seed layers were evaluated for the growth of vertically aligned high-quality zinc oxide (ZnO) nanorods by the sonochemical method. A total of four samples categorized into two groups were evaluated, with a different type and thickness of seed layer for the first group - ZnO, 85 nm and the second group - Zn, 55 nm respectively. This was after depositing Ti (10 nm) as the adhesion layer on p-type Si (111) substrates for two samples, and without the adhesion layer on the others. All depositions were carried out using RF-sputtering. The effects of the seed layers on the growth of vertically aligned high-quality ZnO nanorods were systematically studied using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) analysis and transmission electron microscopy (TEM). Results show that the type and thickness of a seed layer are key parameters to the synthesis of high quality ZnO nanorods. Results also show that the Ti (10 nm) adhesion layer did not affect the growth surface-to-volume ratio of the ZnO nanorods and the ZnO nanorods synthesized using ZnO (85 nm) as seed layer has a better surface-to-volume ratio compared to that using Zn (55 nm) as seed layer, with and without the adhesion layer.


2011 ◽  
Vol 1303 ◽  
Author(s):  
Hosang Ahn ◽  
Seon-Bae Kim ◽  
Dong-Joo Kim

ABSTRACTControlled ZnO nanostructures were grown on a flexible substrate for the future development of smart sensing tags. Thermolysis-assisted chemical solution deposition was used to grow ZnO nanorods at 85°C from 0.01mol of Zinc nitrate hexahydrate and HMT (Hexamethyltetramine) solution. To promote and modulate the ZnO nanorods, R.F. sputtered ZnO seed layers were deposited on polyimide substrates at various film thicknesses in the range of 8 to 160 nm. The optimum processing conditions to fabricate ZnO nanostructures have been investigated to examine the growth behaviors and to correlate the process parameters with the morphological characteristics. When the ethanol gas sensitivities were measured at different thickness of ZnO seed layers before growing ZnO nanorods, the highest sensitivity was obtained at 40 nm thick ZnO film at 300°C where the film thickness is similar to the Debye length. When ZnO nanorods were grown on such a ZnO seed layer, the sensitivities were more heavily influenced by the ZnO nanostructures rather than the thickness of the seed layer probably due to the dominant proportion of carrier density involved with the gas absorption.


RSC Advances ◽  
2014 ◽  
Vol 4 (84) ◽  
pp. 44452-44456 ◽  
Author(s):  
Y. Yin ◽  
Y. Sun ◽  
M. Yu ◽  
X. Liu ◽  
B. Yang ◽  
...  

Annealing or plasma pre-treating the ZnO seed layer influences the nucleation and hydrothermal growth of ZnO nanorods and their photoluminescence.


2012 ◽  
Vol 1426 ◽  
pp. 251-256 ◽  
Author(s):  
Bonne Eggleston ◽  
Sergey Varlamov ◽  
Jialiang Huang ◽  
Rhett Evans ◽  
Jonathon Dore ◽  
...  

ABSTRACTA new method to form high quality crystalline silicon thin films on cheap glass substrates is developed using a single pass of a line-focus cw diode laser in air. The laser process results in the formation of large high-quality crystals as they grow laterally in the scan direction – seeded by the previously crystallised region. Grains 10 μm in thickness, up to millimetres in length and hundreds of microns in width have been grown with virtually zero detectable intragrain defects. Another mode is found which results in much smaller crystals grown by partial melting. The dominant grain boundaries identified are Σ3 <111> 60° twins. Hall mobilities as high as 470 cm2/Vs have been recorded. A diffused emitter is used to create a p-n junction at the rear of the films which produces open-circuit voltages as high as 539 mV.


2015 ◽  
Vol 3 (31) ◽  
pp. 15876-15881 ◽  
Author(s):  
Yiming Tang ◽  
Peng Wang ◽  
Jung-Ho Yun ◽  
Rose Amal ◽  
Yun Hau Ng

High quality coating of vertically aligned ZnO nanorods with CuInS2 nanoparticles is achieved by a pulse-regulated electrodeposition method.


2019 ◽  
Vol 4 (1) ◽  
pp. 45-58
Author(s):  
S. Mageswari ◽  
Balan Palanivel

Background: Zinc oxide (ZnO) is one of the most attractive II-VI semiconductor oxide material, because of its direct wide band gap (3.37 eV) and large binding energy (60 meV). Zinc oxide (ZnO) is a promising semiconductor due to its optimised optical properties. Among semiconductor nanostructures, the vertically aligned one-dimensional ZnO nanorods are very important for nano device application. Methods: Vertically aligned ZnO nanorod arrays were grown on ZnO, aluminum doped ZnO (ZnO:Al), tantalum doped ZnO (ZnO:Ta) and aluminum and tantalum co-doped ZnO (ZnO:Al,Ta) seed layer by hydrothermal method. Results: The X-Ray Diffraction (XRD) investigation indicated the presence of hexagonal phase for the both seed layers and nanorods. The Scanning Electron Microscope (SEM) images of ZnO and doped ZnO seed layer thin-films show spherical shaped nanograins organized into wave like morphology. The optical absorption spectra revealed shift in absorption edge towards the shorter wavelength (blue shifted) for ZnO nanorods grown on ZnO:Al, ZnO:Ta and ZnO:Al,Ta seed layer compared to ZnO nanorods grown on ZnO seed layer. Conclusion: The increase in band gap value for the ZnO nanorods grown on doped ZnO seed layers due to the decrease in crystallite size and lattice constant as evidenced from XRD analysis. The unique property of Al, Ta doped ZnO can be used to fabricate nano-optoelectronic devices and photovoltaic devices, due to their improved optical properties.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Jian Shang ◽  
Ye Sun ◽  
Teng Zhang ◽  
Zhen Liu ◽  
Hong Zhang

Silver (Ag) has broad-spectrum antibacterial properties and is widely used in various fields, including in antibacterial coatings for orthopedic implants. For reasons of cost and cytotoxicity, improvement of the antibacterial efficiency of Ag is necessary. The scientific community has also shown a strong enthusiasm in this research area. In this paper, ZnO nanorod arrays were prepared on a titanium (Ti) substrate by seed-assisted hydrothermal method and Ag nanoparticles were deposited by magnetron sputtering to obtain Ag nanoparticle-decorated ZnO nanorod arrays (ZnO nanorods/Ag nanoparticles). The antibacterial properties of ZnO nanorods/Ag nanoparticles against Pseudomonas aeruginosa were systematically studied by agar diffusion method and were compared with other samples such as ZnO nanorod arrays and ZnO seed layer/Ag nanoparticles. The experimental results showed that ZnO nanorods/Ag nanoparticles displayed significantly higher antibacterial properties against Pseudomonas aeruginosa than other samples, including ZnO nanorod arrays and ZnO seed layer/Ag nanoparticles. These superior antibacterial properties originated predominantly from the morphological structure of ZnO nanorods, which optimized the particle size and distribution of Ag nanoparticles, greatly improving their antimicrobial efficiency. The synergistic antibacterial properties of Ag nanoparticles and ZnO nanorods make Ag nanoparticle-decorated ZnO nanorod arrays a promising candidate for antibacterial coating of orthopedic implants.


2009 ◽  
Vol 1153 ◽  
Author(s):  
Srisaran Venkatachalam ◽  
Dries Van Gestel ◽  
Ivan Gordon

AbstractA polycrystalline silicon (pc-Si) thin film with large grains on a low-cost non-Si substrate is a promising material for thin-film solar cells. One possibility to grow such a pc-Si layer is by aluminum-induced crystallization (AIC) followed by epitaxial thickening. The best cell efficiency we have achieved so far with such an AIC approach is 8%. The main factor that limits the efficiency of our pc-Si solar cells at present is the presence of many intra-grain defects. These intra-grain defects originate within the AIC seed layer. The defect density of the layers can be determined by chemical defect etching. This technique is well suited for our epitaxial layers but relatively hard to execute directly on the seed layers. This paper presents a way to reveal the defects present in thin and highly-aluminum-doped AIC seed layers by using defect etching. We used diluted Schimmel and diluted Wright etching solutions. SEM pictures show the presence of intra-grain defects and grain boundaries in seed layers after defect etching, as verified by EBSD analyses. The SEM images of diluted Wright etched pc-Si seed layer shows that grain boundaries become much better visible than with diluted Schimmel etch.


2016 ◽  
Vol 675-676 ◽  
pp. 237-240
Author(s):  
Nontakoch Siriphongsapak ◽  
Somyod Denchicharoen ◽  
Pichet Limsuwan

In this work, Zinc oxide (ZnO) thin films were deposited on silicon and glass substrates using spin-coating method with different concentrations of precursor (zinc acetate dihydrate) and stabilizer (monoethanolamine). The concentrations of zinc acetate dihydrate and monoethanolamine in isopropanol were varied from 6 mM to 500 mM. Subsequently, the substrate with ZnO thin film as a seed layer was used to grow ZnO nanostructures by hydrothermal process with the same concentration of precursor (zinc nitrate hexahydrate), temperature, and time for each growth. The samples were characterized by field-emission scanning electron microscopy (FESEM), X-rays diffractometer (XRD), and UV-visible spectrophotometer (UV-vis) to study morphology, crystallographic structure, and optical property, respectively. The results showed that particle size, crystallinity, and transmittance of seed layers were changed with increasing concentrations of spin-coated precursor. Furthermore, the nanostructures were found that higher precursor concentration of seed layers affected the formation of ZnO nanorods to be nanosheets.


Sign in / Sign up

Export Citation Format

Share Document