Investigation of Mixing Flow Process Using PIV and PLIF Techniques

2013 ◽  
Vol 816-817 ◽  
pp. 1054-1058
Author(s):  
Ezddin Hutli ◽  
Dániel Tar ◽  
Valer Gottlasz ◽  
Gyorgy Ezsol

A coolant mixing investigation in a head of a half-size model of VVER-440 fuel assembly (simulator) has been performed at KFKI. The PIV and PLIF measurements have been done under a selected list of power distribution options, flow rates and powers. The experiments were focused on obtaining a data for investigating the trends in temperature difference between the value registered by a thermocouple and that obtained using PLIF technique. The coolant temperature distribution has been measured in many positions along the coolant trajectory and where coolant flow leaves the rod bundle and in the cross section location of thermocouple, thus the dynamics of effect of mixing process is also declared. PIV and LPIF results show their ability to verify the primary results of CFD calculations.

Author(s):  
Zhenyang Li ◽  
Tao Zhou ◽  
Canhui Sun ◽  
Xiaozhuang Liu

Physical characteristics of the coolant in the Supercritical-pressure Light Water Cooled Reactor (SCWR) vary greatly near the pseudo-critical point, which will cause variations of core neutron cross section and then bring about power perturbation. Further it will prompt the corresponding thermal parameters of supercritical water changed, and form feedback action, finally resulting in intensely coupled thermal-hydraulics and neutron-physical. Proper fuel assembly has been selected as research object, and the model of multiple parallel channels has been established. In view of this model, using DRAGON code for neutron-physical calculations and developing corresponding thermal-hydraulic programs, and then achieve coupling them through appropriate data interface, the calculation platform established. Finally the power distribution and the corresponding parameters temperature distributions in the model have been predicted. On account of deficiencies reflected in calculations, such as the heterogeneous power distribution, fuel assembly geometry has been changed, for instance the proper peripheral moderator wall has been added based on the preceding assembly, then do the coupling calculations and analyze the results. Comparisons between different results have been made, and the expected aim has been reached, which can prove the rationality of assembly modifications and meanwhile prove the usability of the calculation platform. Thus, modified assembly and the calculation platform could be the calculation foundation in future designs of SCWR.


Author(s):  
Hiroki Takiguchi ◽  
Masahiro Furuya ◽  
Takahiro Arai ◽  
Kenetsu Shirakawa

Rapid thermal elevation in nuclear reactor is an important factor for nuclear safety. It is indispensable to develop a three-dimensional nuclear thermal transient analysis code and confirm its validity in order to accurately evaluate the effectiveness of the running nuclear safety measures when heating power of reactor core rapidly rises. However, the heat transfer characteristics such as reactivity feedback characteristics due to moderator density and the technical knowledge explaining the uncertainty are insufficient. In particular, the cross propagation behavior of vapor bubble (void) in cross section of fuel assembly is not grasped. This study evaluates the cross propagation void behavior in a simulated fuel assembly at time of rapid heat generation with a thermal hydraulic test loop including a 5 × 5 rod bundle having the heat generation profile in the flow cross sectional direction. In this paper, the branching heat output condition of transient cross propagation was investigated from visualization of high speed video camera and void fraction measurement by wire mesh sensor with the inlet flow rate 0.3m/s and the inlet coolant temperature 40°C, which are based on the transient safety analysis condition. In addition, we applied the particle imaging velocimetry (PIV) technique to measure liquid-phase velocity profile of the coolant in the transient cross flow and experimentally clarified the relationship with the cross flow.


2011 ◽  
Vol 354-355 ◽  
pp. 1241-1244
Author(s):  
Yan He ◽  
Man Ding ◽  
Qian Zhang

In this paper the temperature field of Concrete Filled Steel Tube (CFST) member under solar radiation is simulated. The results show that temperature distribution caused by solar radiation is nonlinear over the cross-section of CFST member, and it is significantly varied with time and sections, the largest nonlinear temperature difference is over 26.3°C.


2018 ◽  
Vol 14 ◽  
pp. 1
Author(s):  
Vojtech Caha ◽  
Jiří Čížek

This paper presents the results of an analysis of lateral coolant flow between adjacent fuel assemblies with non-identical spacing grids in a mixed core consisting of TVSA-T mod.1 and TVSA-T mod.2 fuel assemblies. The calculation was carried out using modified subchannel code SUBCAL which allows to calculate 3D thermo-hydraulic characteristics of the coolant flow in the full three fuel assemblies model. This full three fuel assemblies model was created in two variants. The first variant consisted of three hydraulically identical fuel assemblies TVSA-T mod.1, whereas the second variant consisted of two fuel assemblies TVSA-T mod.1 and one fuel assembly TVSA-T mod.2 which mainly differ in types, number and axial coordinate of spacing grids and also in diameter of guide tubes. The influence of mixed core to lateral coolant flow and hence coolant temperature was obtained by comparing these two variants. The power distribution was taken from presumed mixed core fuel reload calculated by macro-code ANDREA. Finally there were also provided a comparison of results achieved by subchannel analysis approach with calculation of similar problem using CFD code ANSYS CFX by TVEL, the fuel supplier.


Author(s):  
Xiangyu Yu ◽  
Zhansheng Liu ◽  
Zhaohua Zhou ◽  
Jigang Feng ◽  
Peng He

Abstract During the cooling process after shut down for aeroengines, internal hot air rises and cold air drops due to natural convection, which makes uneven temperature distribution in the casing and creates temperature difference in radial and axial directions, causing uneven deformation of rotor. Once aeroengine starts after a little time of cooling, thermal bow forms more easily, causing excessive vibration. In some cases, the thermal bow can be so severe that the engine will be unable to start. Based on the rotor for one certain type of aeroengine, the paper describes an experiment of thermal bow failure, which is divided into a static one and a dynamic one, both having simulated the uneven temperature field. Firstly, the static experiment measures temperature difference and deformation of rotor in different temperature environments and dissimilar cold blowing conditions. Results show temperature difference of each cross section increases with the growth of casing temperature. And cold blowing can quickly and effectively eliminate uneven temperature distribution and structural deformation. Secondly, the dynamic experiment produces the results that the vibration amplitude increases obviously when rotating frequency approaches critical speeds (2365r/min and 2892r/min). As the cooling time increases, the amplitude decreases until normal, which is the most important feature different from that in failure of initial mass imbalance. Thermal bow mainly influences the fundamental frequency vibration. Cold blowing can quickly and effectively reduce vibration amplitude. The conclusions obtained from the dynamic experiments are consistent with the known regulations from engineering experience.


2011 ◽  
Vol 295-297 ◽  
pp. 2321-2324
Author(s):  
Sai Wei ◽  
Zhao Hui Zhang ◽  
Xiang Bo Shen ◽  
Fu Chi Wang ◽  
Shu Kui Li

An electrical – thermal coupled finite element model (FEM) is developed to investigate the temperature distribution during spark plasma sintering (SPS) with a pre-designed graded graphite die. The sample used in this investigation consists of five layers with different contents of Ti and TiB (45 wt % Ti, 55 wt %Ti, 65 wt % Ti, 75 wt % Ti and 85 wt % Ti). The temperature distribution in gradient Ti-TiB composites was obtained. Owing to the use of the die with changing cross section, a temperature difference of 142K in the axial direction inside the sample is achieved, while the maximum radial temperature difference is 6.2 times less than the axial one.


Author(s):  
Zhixiong Tan ◽  
Jiejin Cai

After Fukushima Daiichi Nuclear Power Plant accident, alternative fuel-design to enhance tolerance for severe accident conditions becomes particularly important. Silicon carbide (SiC) cladding fuel assembly gain more safety margin as novel accident tolerant fuel. This paper focuses on the neutron properties of SiC cladding fuel assembly in pressurized water reactors. Annular fuel pellet was adopted in this paper. Two types of silicon carbide assemblies were evaluated via using lattice calculation code “dragon”. Type one was consisted of 0.057cm SiC cladding and conventional fuel. Type two was consisted of 0.089cm SiC cladding and BeO/UO2 fuel. Compared the results of SiC cladding fuel assembly neutronic parameters with conventional Zircaloy cladding fuel assembly, this paper analyzed the safety of neutronic parameters performance. Results demonstrate that assembly-level reactivity coefficient is kept negative, meanwhile, the numerical value got a relatively decrease. Other parameters are conformed to the design-limiting requirement. SiC kinds cladding show more flat power distribution. SiC cases also show the ability of reducing the enrichment of fuel pellets even though it has higher xenon concentration. These types of assembly have broadly agreement neutron performance with the conventional cladding fuel, which confirmed the acceptability of SiC cladding in the way of neutron physics analysis.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
Jia Wang ◽  
Fabian Nitschke ◽  
Maziar Gholami Korzani ◽  
Thomas Kohl

Abstract Temperature logs have important applications in the geothermal industry such as the estimation of the static formation temperature (SFT) and the characterization of fluid loss from a borehole. However, the temperature distribution of the wellbore relies on various factors such as wellbore flow conditions, fluid losses, well layout, heat transfer mechanics within the fluid as well as between the wellbore and the surrounding rock formation, etc. In this context, the numerical approach presented in this paper is applied to investigate the influencing parameters/uncertainties in the interpretation of borehole logging data. To this end, synthetic temperature logs representing different well operation conditions were numerically generated using our newly developed wellbore simulator. Our models account for several complex operation scenarios resulting from the requirements of high-enthalpy wells where different flow conditions, such as mud injection with- and without fluid loss and shut-in, occur in the drill string and the annulus. The simulation results reveal that free convective heat transfer plays an important role in the earlier evolution of the shut-in-time temperature; high accuracy SFT estimation is only possible when long-term shut-in measurements are used. Two other simulation scenarios for a well under injection conditions show that applying simple temperature correction methods on the non-shut-in temperature data could lead to large errors for SFT estimation even at very low injection flow rates. Furthermore, the magnitude of the temperature gradient increase depends on the flow rate, the percentage of fluid loss and the lateral heat transfer between the fluid and the rock formation. As indicated by this study, under low fluid losses (< 30%) or relatively higher flow rates (> 20 L/s), the impact of flow rate and the lateral heat transfer on the temperature gradient increase can be ignored. These results provide insights on the key factors influencing the well temperature distribution, which are important for the choice of the drilling data to estimate SFT and the design of the inverse modeling scheme in future studies to determine an accurate SFT profile for the high-enthalpy geothermal environment.


Sign in / Sign up

Export Citation Format

Share Document