scholarly journals Microstructure and Mechanical Property of Al6Si2Cu Alloy Subjected to Double-Solution Heat Treatment

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Seongbin An ◽  
Minsuk Kim ◽  
Chaeeul Huh ◽  
Chungseok Kim

This study aims to develop the mechanical properties of the Al6Si2Cu aluminum alloy through the double-solution treatment. In addition to the Al matrix, large amounts of coarse eutectic Si, Al2Cu intermetallic, and Fe-rich phases were generated through thermo-calc simulation in agreement with the equilibrium phases. The eutectic Si phase is fragmented and spheroidized by the solution treatment as the heat treatment temperature and time increase. The Al2Cu intermetallic phase is dissolved into the Al matrix, resulting in an increase in both strength and elongation. The second-step solution temperature at 525 °C should be an optimum condition for enhancing the mechanical properties of the Al6Si2Cu aluminum alloy.

2016 ◽  
Vol 857 ◽  
pp. 256-260
Author(s):  
Chung Seok Kim ◽  
Jin Woo Jo ◽  
Hak Min Lee

The effects of solution heat treatment of Al6Si2Cu aluminum alloy on incipient melting of θ-Al2Cu phase have been investigated. Solution heat treatments, in this study, are applied to improve of mechanical properties through a single-step solution heat treatment. The microstructure of as-cast specimen represents a typical dendrite structure having a secondary dendrite arm spacing of 37um. In addition to the Al matrix, a large amount of coarsen eutectic Si, θ-Al2Cu intermetallic phases and Fe-rich phases are identified. As the solution temperature increases, the Vickers's hardness increases up to 510°C and thereafter hardness decreases at the temperature of 520°C and 530°C. This hardness behavior may closely related with microstructural evolution such as solubility of alloying elements up to 510°C and also melting of θ-Al2Cu intermetallic phases over 510°C in this study. Consequentially, the optimal single-step solution heat treatment temperature should be 510°C to improve mechanical property.


2016 ◽  
Vol 857 ◽  
pp. 246-250
Author(s):  
Chung Seok Kim ◽  
Sang Guy Park ◽  
Won Sik Kong

This paper investigated the effects of two-step solution heat treatment of aluminum alloy for lightweight automotive on mechanical properties. Solution heat treatments in this study are applied to improve of mechanical properties through a single-step and two-step solution heat treatment. The microstructure of AlSiCu casting specimen represents a typical dendrite structure having a secondary dendrite arm spacing (SDAS) of 40 um. In addition to the Al matrix, a large amount of coarsen eutectic Si, Al2Cu intermetallic phases and Fe-rich phases are identified. After solution heat treatment, the mechanical properties of two-step solution heat treatment alloy show higher values than as-cast and a single-step solution specimens. Consequentially, the two-step solution heat treatment could be used in automotive parts to improve mechanical properties.


2013 ◽  
Vol 829 ◽  
pp. 62-66 ◽  
Author(s):  
Alireza Fallahi ◽  
Hossein Hosseini-Toudeshky ◽  
Seyed Mahmoud Ghalehbandi

It is the objective of this study to investigate the effect of ECAP processing and heat treatment on the mechanical properties of the UFG 7075 alloy. Also the effect of post ECAP heat treatment is investigated. The alloy is processed by ECAP after annealing as well as solution treatment to produce an UFG structure. Furthermore mechanical properties and their variations during annealing and aging are investigated. The hardness of the pre-ECAP annealed and the pre-ECAP solutionised 7075 aluminum alloy has increased significantly compared with that of the CG sample. Also hardness of ECAPed specimen has not experienced significant changes in post-ECAP heat treatment and indicated that the alloy had approximately good thermal stability.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3798
Author(s):  
Meng Sun ◽  
Dong Li ◽  
Yanhua Guo ◽  
Ying Wang ◽  
Yuecheng Dong ◽  
...  

In order to reduce the cost of titanium alloys, a novel low-cost Ti-3Al-5Mo-4Cr-2Zr-1Fe (Ti-35421) titanium alloy was developed. The influence of heat treatment on the microstructure characteristics and mechanical properties of the new alloy was investigated. The results showed that the microstructure of Ti-35421 alloy consists of a lamina primary α phase and a β phase after the solution treatment at the α + β region. After aging treatment, the secondary α phase precipitates in the β matrix. The precipitation of the secondary α phase is closely related to heat treatment parameters—the volume fraction and size of the secondary α phase increase when increasing the solution temperature or aging time. At the same solution temperature and aging time, the secondary α phase became coarser, and the fraction decreased with increasing aging temperature. When Ti-35421 alloy was solution-treated at the α + β region for 1 h with aging surpassing 8 h, the tensile strength, yield strength, elongation and reduction of the area were achieved in a range of 1172.7–1459.0 MPa, 1135.1–1355.5 MPa, 5.2–11.8%, and 7.5–32.5%, respectively. The novel low-cost Ti-35421 alloy maintains mechanical properties and reduces the cost of materials compared with Ti-3Al-5Mo-5V-4Cr-2Zr (Ti-B19) alloy.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Ho-Jung Kang ◽  
Jin-Young Park ◽  
Yoon-Suk Choi ◽  
Dae-Hyun Cho

Heat treatment is widely used to improve the properties of Al–Si–Mg alloys and its outcomes are influenced by the parameters applied during the treatment. This study describes the effect of the solution and artificial aging treatments on the microstructure and mechanical properties of die-cast Al–Si–Mg alloys. The microstructure of the as-cast Al–Si–Mg alloy was mainly composed of α-Al, complex needle-type eutectic Si particles, Mg2Si, and α-AlFeMn. The complex needle-type eutectic Si particles disintegrated into spheroidal morphologies, while the Mg2Si was dissolved due to the solid solution treatment. The maximum yield strength (YS) and ultimate tensile strength (UTS) values were 126.06 and 245.90 MPa at 520 °C after 90 min of solution heat treatment, respectively. Although the YS and UTS values of the Al–Si–Mg alloys reduced due to the solution treatment, the elongation (EL) of the solid solution heat-treated Al–Si–Mg alloys was improved in comparison to that of the as-cast Al–Si–Mg alloy. The maximum YS and UTS of 239.50 and 290.93 MPa were obtained after performing artificial aging at 180 °C for 180 min, respectively. However, the EL of the aging heat-treated alloy was reduced by a minimal value.


Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1205
Author(s):  
Li ◽  
Yan ◽  
Wang ◽  
Li ◽  
Liu ◽  
...  

In this paper, the effect of heat treatment (solution treatment and artificial aging) on the microstructure and properties of as-cast Al5Si1Cu0.5Mg aluminum alloy and its composite reinforced with 1.5 wt.% SiC particles was studied. The results showed that at 520 °C the optimal solution time for the aluminum alloy and its composite is 9 h and 6 h, respectively. After solution treatment, the microstructure of these two materials consists of a uniform distribution of nearly spherical eutectic Si and skeletal γ phase, furthermore, the composite eutectic Si phase is smaller and γ phase is more dispersed. After artificial aging at 175 °C for 6 h, the microstructure of the composite is more dispersed and finer than that of the aluminum alloy on the whole and Al2Cu is precipitated. After heat treatment, the microhardness, ultimate tensile strength, and elongation of the aluminum alloy and its composite are higher than those of the as-casts. At the same time, the morphology of tensile fracture surface changes very much from a large area of cleavage plane to a large number of dimples and the tearing ridges become thicker for both the aluminum alloy and its composite.


2018 ◽  
Vol 157 ◽  
pp. 02053 ◽  
Author(s):  
Eva Tillová ◽  
Mária Chalupová ◽  
Lenka Kuchariková ◽  
Juraj Belan ◽  
Denisa Závodská

The effect of solution treatment on mechanical properties (UTS, elongation, Brinell hardness) and microstructure (Si-morphology and Si-size) of an aluminium alloy (A356) used for casting cylinder heads was studied. The tests were carried out with specimens machined from the bulkheads of V8 engine blocks cast by the low pressure process. The samples were tested in as-cast and T6 heat treating conditions (solution heat treatment at 530°C with different time - 2, 3, 4, 5, 6, 7 hours, quenching in water at 20°C and precipitation hardened for 4 hour at 160°C). The results show that used heat treatment improves mechanical properties of the cylinder head casts. Tensile strength and hardness of specimens increase with solution treatment time. The hardness is a reflection of solution strengthening and silicon particle distribution in matrix. Solution temperature 530°C and 5 hours solution time is appropriate to obtain better morphology and distribution of Si particles in microstructure. Prolonged solution treatment (more than 5 hours) leads to a coarsening of the Si particles, while the numerical Si density decreases. As the particle density decreases, a fewer number of sites are available for crack nucleation, and hence, the fracture properties are improved. The data obtained from this study will be used to improve process control, and to help the selection of heat treatment of the casting for future products.


2016 ◽  
Vol 256 ◽  
pp. 58-62 ◽  
Author(s):  
Kang Du ◽  
Qiang Zhu ◽  
Da Quan Li

T6 heat treatment is an effective method to improve the comprehensive properties of Al-Si-Cu-Mg series aluminium alloys. Solution treatment temperature and time, quench process and media, as well as artificial ageing temperature and time are the key factors to determine mechanical properties. Besides these factors, natural ageing, i.e. the holding time between quenching and the starting of artificial treatment at ambient temperature was observed to be significant affect mechanical properties of the aluminium alloys. This effect on semi solid processed aluminium alloys was lack of investigations as the semi solid process produces T6 treatable and weldable components. The present paper focuses on the change regularity of hardness and precipitate behaviour of semi-solid 319S aluminium alloy under different natural ageing (NA) treatment additional to standard T6. Density and morphology of hardening precipitates are analysed using TEM, and the influence mechanism of NA during T6 heat treatment will be discussed. The results show that NA has a positive influence on mechanical properties of the rheo-cast 319S alloy.


2012 ◽  
Vol 476-478 ◽  
pp. 118-121 ◽  
Author(s):  
Shi Xing Zhang ◽  
Shao Min Qu

Process of solution treatment of 6061 aluminum alloy was done by hardness test and microanalysis in this paper. The effects of different solution treatment temperature on the microstructure and mechanical properties of 6061 aluminum alloy were studied and the influence of overburning on the microstructure and mechanical properties of 6061 aluminum alloy were also analyzed. The experimental results show that overburning occurring while 6061 aluminum alloy is heated above 580°C . The hardness measurements and microstructure analysis results show that the hardness decreased, grain boundary becomes trigemanal and compounded –melting structure (burnt structure) appeared when overburning occuring for this alloy .


2011 ◽  
Vol 339 ◽  
pp. 714-717 ◽  
Author(s):  
Siriwan Pannaray ◽  
Sirikul Wisutmethangoon ◽  
Thawatchai Plookphol ◽  
Jessada Wannasin

The aim of this study is to determine the appropriate solution treatment temperature and time of semi solid 2024 Al alloy. Solution heat treatment at 450°C and 480 °C for various times, from 4 hours to 16 hrs, were applied followed by artificial aging at 220 °C for 1 hr. Microstructure of the semi solid cast 2024 aluminum alloy mainly showed globular grain structure which consisted of matrix-α (Al) and grain boundary (GB) - eutectic phases (α+Al2CuMg/Al2Cu). Eutectic GB phases was found to completely dissolved after solution heat treatment at 480°C for 14 hrs while sample solution treated at 450°C for the same time showed the existence of remaining GB phases. Prolonging heat treatment after 14 hrs at both temperatures resulted in the formation of coarse black particles at the grain boundaries which were identified as Mg2Si phases. Therefore the suitable solution treatment of the alloy in this study was at 480°C for 14 hrs.


Sign in / Sign up

Export Citation Format

Share Document