Effect of Ultrasonic Vibration on Electrospun Poly(vinyl Alcohol) (PVA) Nanofibers

2013 ◽  
Vol 843 ◽  
pp. 1-8 ◽  
Author(s):  
Na Si ◽  
Lan Xu ◽  
Mei Zhen Wang ◽  
Fu Juan Liu

Poly (vinyl alcohol) (PVA), a classical biodegradable polymer, is successfully fabricated into nanofibers via the vibration-electrospinning, and the obtained nanofibers are characterized by the scanning electron microscopy (SEM). The viscosity and electrical conductivity of PVA solution vary dramatically with the ultrasonic radiation time and intensity. The novel strategy can produce finer nanofibers than those obtained without ultrasonic vibration.

2019 ◽  
Vol 107 (8) ◽  
pp. 725-735
Author(s):  
Hoda H. Saleh ◽  
Rehab Sokary ◽  
Zakaria I. Ali

Abstract Polyaniline (PANI) nanoparticles and PANI/poly vinyl alcohol (PVA) nanocomposite films were synthesized by the oxidative polymerization of aniline and ammonium peroxodisulfate (APS), as an oxidizing agent in aqueous medium. The PANI/PVA nanocomposite films were exposed to γ-irradiation after oxidative polymerization. Synthesized polyaniline (PANI) nanoparticles and PANI/PVA nanocomposite films were characterized by attenuated total reflectance infrared spectroscopy (FTIR-ATR), X-ray diffraction, high resolution scanning electron microscopy, (HRSEM) high resolution transmission electron microscopy, (HRTEM) and UV-VIS absorption spectroscopy. Energy band gap of PANI nanofibers was determined from Tauc’s plots which equal 4.2 eV. Scanning electron microscopy images show that chemically synthesized of polyaniline has nanofibers structure and irradiated PANI/PVA nanocomposite have a mixture of nanorod and nanosphere structures. The transmission electron microscopy show that chemically synthesized of polyaniline has average length in the range 34 ± 10 nm with less wide distribution, where as the irradiated PANI/PVA nanocomposite has coreshell structure.


2012 ◽  
Vol 463-464 ◽  
pp. 734-738 ◽  
Author(s):  
Tongsai Jamnongkan ◽  
Amnuay Wattanakornsiri ◽  
P. Pungboon Pansila ◽  
Claudio Migliaresi ◽  
Supranee Kaewpirom

Series of poly (vinyl alcohol)/chitosan (PVA/CS) electrospun nanofibers with different weight ratio of PVA and CS were fabricated by electrospinning method. The surface morphology, diameter, and structure of electrospun nanofibers were investigated by scanning electron microscopy (SEM). As a result of PVA and CS composition measurements, the electrospun nanofibers morphologies were mainly affected by weight ratio of the polymer solution. When increasing the chitosan content in the blend solution, the electrospun nanofibers could hardly form. This result indicates that the electrospun nanofiber formation is enhanced by chitosan content.


1994 ◽  
Vol 370 ◽  
Author(s):  
Un-Jen Chu ◽  
Jae-Ho Kim ◽  
Cheol Park ◽  
Richard E. Robertson

AbstractThe presence of poly(vinyl alcohol) (PVA) in portland cement during its hydration was found to induce changes in the microstructure and behavior of the paste that forms around aggregate. The microstructure was studied with scanning electron microscopy in secondary electron, backscattered electron, and EDX mapping modes and with Fourier-transform infraredspectroscopy. The adhesion between cement paste and aggregate was examined with planar aggregate surfaces. With concentrations of the order of 1% by weight of PVA based onthe weight of the cement, the deposition of calcium hydroxide on the aggregate surface was found to be diminished and the porous layer that usually surrounds the aggregate to be reduced in thickness. Also, the bond between the aggregate and cement paste was increasedenough for the bond to approach the strength of the cement.


2014 ◽  
Vol 575 ◽  
pp. 191-194

In the present study, single-walled nanotubes-poly (vinyl alcohol) (SWNT-PVA) mixed-matrix-membranes (MMMs) are prepared and carefully characterized via various solid-state techniques, including scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). We investigate how the separation performance of SWNT-PVA MMM in an ethanol-water pervaporation system is improved with the loading of SWNTs in the membranes.


2020 ◽  
Vol 11 (3) ◽  
pp. 10801-10811

This paper reported the fabrication of starch-based nanofibers derived from various weight ratios (w:w) of native sago starch (SS) and poly (vinyl alcohol) (PVA) (0:100, 1:100, 3:100, and 5:100) using the electrospinning technique. The effects of electrospinning operation parameters on the surface morphology of SS/PVA nanofibers were observed by using Scanning Electron Microscopy (SEM). The smooth and bead-free SS/PVA nanofibers with fiber diameters within the range of 90 nm to 150 nm were produced under the optimized conditions. The paracetamol (PCM) was encapsulated into the SS/PVA nanofibers via the blending process. The SS/PVA nanofibers exhibited a maximum PCM loading capacity of 0.9573 mg.mg-1, and PCM was observed to release out from SS/PVA nanofibers slowly and steadily for 72 hours.


Author(s):  
Yuri V. Pakharukov ◽  
Farid K. Shabiev ◽  
Ruslan F. Safargaliev ◽  
Boris S. Yezdin ◽  
Valery V. Kalyada

Graphene, due to its two-dimensional structure, has some unique properties. For example, the thermal conductivity and electrical conductivity of graphene are an order of magnitude higher than the thermal conductivity and electrical conductivity of copper. For this reason, graphene-based nanofluids are now used in many industries. Due to the effect of self-organization of graphene nanoparticles with hydrocarbon molecules, the use of graphene has become possible in the oil industry. Graphene-based nanofluids are used as a displacement fluid to increase the oil recovery coefficient. The displacing ability of graphene-based nanofluids is concentration dependent. An increase in the concentration of nanoparticles entails an increase in viscosity, which negatively affects the performance characteristics of the nanofluid. This problem is partially solved due to the synergistic effect, hybrid nanofluids consisting of nanoparticles of graphene and metals or carbides enhance the displacing ability. Using atomic force microscopy, scanning electron microscopy and molecular modelling methods, this work has studied the formation of supramolecular structures that form a transition region at the oil-nanofluid interface with low surface tension as a result of a synergistic effect in the interaction of graphene planar nanoparticles and silicon carbide nanoparticles covered with graphene layers (Core-shell). The model experiments on a Hele-Shaw cell have shown that in a porous medium, such hybrid nanofluids have a high displacement ability of residual oil. At the same time, the oil — nanofluid interface remains stable, without the formation of viscous fingers. During the study by scanning electron microscopy, a transition region was observed, in the structuring of which the nanoparticles were directly involved. The displacement efficiency of a hybrid nonofluid depends on the concentration of nanoparticles and their interaction.


Open Physics ◽  
2012 ◽  
Vol 10 (1) ◽  
Author(s):  
Ihor Studenyak ◽  
Yuriy Neimet ◽  
Csaba Cserháti ◽  
Sándor Kökényesi ◽  
Edvardas Kazakevičius ◽  
...  

AbstractStructural studies of (Ag3AsS3)x (As2S3)1−x chalcogenide superionic glasses in the compositional range x = 0.3–0.9 were performed by scanning electron microscopy. Temperature and compositional dependences of transmission coefficient, electrical conductivity, and activation energy were investigated


Sign in / Sign up

Export Citation Format

Share Document