Modeling and Simulation of Standard II Missiles Intercepting a Low Target

2013 ◽  
Vol 846-847 ◽  
pp. 1505-1508 ◽  
Author(s):  
Jie Chen ◽  
Shi Gai Li ◽  
Jun Wei Lei

Based on linear simplification method, the mathematical model of standard II missile and target is built. The command control equation and guidance law are introduced to compute the trajectory of standard II missile and targets. The interception of low flying target with standard II missile is modeled and simulated with computer program. It studied different situations that the velocity and height of target varies. The numerical simulation result is proposed and analyzed, which is meaningful for the research of anti-missile defense.

2013 ◽  
Vol 365-366 ◽  
pp. 370-374
Author(s):  
Hai Chu Chen ◽  
Fang Yi Wu ◽  
Ping Zhang ◽  
Gen Liang Xiong ◽  
Yin Fa Zhu

It researched a new type of intelligent thermostatic mixing valve which could keep the temperature and flux of the valve outlet water constant through the adaptive controller. It firstly established the mathematical model about angle - flux and angle - temperature of the valve. And then it based on thekεturbulence model and applied Fluent software to numerical simulation of the valve about the flow field. Finally, it compared the simulation results with the calculated value. The results show that they are basically consistent, prove the correctness of the theoretical research, and can be used to improve designing of the thermostatic valve.


2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Delia Perju ◽  
Harieta Pirlea ◽  
Gabriela-Alina Brusturean ◽  
Dana Silaghi-Perju ◽  
Sorin Marinescu

The European laws and recently the Romanian ones impose more and more strict norms to the large nitrogen dioxide polluters. They are obligated to continuously improve the installations and products so that they limit and reduce the nitrogen dioxide pollution, because it has negative effects on the human health and environment. In this paper are presented these researches made within a case study for the Timi�oara municipality, regarding the modeling and simulation of the nitrogen dioxide dispersion phenomenon coming from various sources in atmosphere with the help of analytical-experimental methods. The mathematical model resulting from these researches is accurately enough to describe the real situation. This was confirmed by comparing the results obtained based on the model with real experimental values.


Author(s):  
Oluwafemi Temidayo J. ◽  
Azuaba E. ◽  
Lasisi N. O.

In this study, we analyzed the endemic equilibrium point of a malaria-hygiene mathematical model. We prove that the mathematical model is biological and meaningfully well-posed. We also compute the basic reproduction number using the next generation method. Stability analysis of the endemic equilibrium point show that the point is locally stable if reproduction number is greater that unity and globally stable by the Lasalle’s invariant principle. Numerical simulation to show the dynamics of the compartment at various hygiene rate was carried out.


Author(s):  
Yu Zhao ◽  
Yingying Wang ◽  
Liwei Li ◽  
Chao Yang ◽  
Yang Du ◽  
...  

The sheave installation method (SIM) is an effective and non-conventional method to solve the installation of subsea equipment in deep water (>1000m), which has been developed to deploy the 175t Roncador Manifold I into 1,885 meters water depth in 2002. With the weight increment of subsea cluster manifold, how to solve its installation with the high reliability in the deep sea is still a great challenge. In this paper, the installation of the 300t subsea cluster manifold using the SIM is studied in the two-dimensional coordinate system. The mathematical model is established and the lumped mass method is used to calculate the hydrodynamic forces of the wireropes. Taking into account the complex environment loads, the numerical simulation of the lowering process is carried out by OrcaFlex. The displacement and vibration of the subsea cluster manifold in the z-axis direction and the effective tension at the top of the wireropes can be gotten, which can provide guidance for the installation of the cluster manifold in the South China Sea.


2019 ◽  
Vol 19 (1) ◽  
pp. 93-99
Author(s):  
V Zagrevskiy ◽  
O Zagrevskiy

Aim. The article deals with developing a computer program to simulate the movement of the object with a given initial and final speed and fixed travel time. Materials and methods. The analysis, as a method of biomechanics, allows us to assess the biomechanical state of the athlete in real sports exercises. The function of motion synthesis is the ability to predict the trajectory and behavior of the biomechanical system at specified reference points of the phase structure of the simulated motion. The article deals with one of the methods of biomechanical synthesis of movements: synthesis of control of the final state of biomechanical systems, based on the reduction of finite control to a given program control after attenuation of the transient component of acceleration. The mathematical description of the object motion is based on the known law of finite control with feedback. Integration of the mathematical model constructed in the form of the differential equation of the second order was carried out by one of the numerical methods of integration: Runge–Kutta method of the fourth order of accuracy. Consideration of the method is based on a mathematical apparatus describing the motion of a material point, which can be represented by a common center of mass of a biomechanical system, a joint, a center of mass of a segment, etc. Results. The mathematical model of the motion of a material point with the given kinematic parameters of motion at the initial and final moments is implemented in a computer program in the Visual Basic 2010 language environment based on the integrated development environment Visual Studio Express 2013. The output provides numerical and visual support for simulation results. Conclusion. It is shown that the developed computer model of the method always implements the goal of motion: to transfer an object from a given initial state by speed to a given final state for a fixed time of movement.


2021 ◽  
Vol 6 (2) ◽  
pp. 83-88
Author(s):  
Asmaidi As Med ◽  
Resky Rusnanda

Mathematical modeling utilized to simplify real phenomena that occur in everyday life. Mathematical modeling is popular to modeling the case of the spread of disease in an area, the growth of living things, and social behavior in everyday life and so on. This type of research is included in the study of theoretical and applied mathematics. The research steps carried out include 1) constructing a mathematical model type SEIRS, 2) analysis on the SEIRS type mathematical model by using parameter values for conditions 1and , 3) Numerical simulation to see the behavior of the population in the model, and 4) to conclude the results of the numerical simulation of the SEIRS type mathematical model. The simulation results show that the model stabilized in disease free quilibrium for the condition  and stabilized in endemic equilibrium for the condition .


2021 ◽  
Vol 2090 (1) ◽  
pp. 012049
Author(s):  
N V Kovalenko ◽  
A V Smirnov ◽  
O A Ryabushkin

Abstract The mathematical model that describes the local heating of biological tissues by optical radiation is introduced. Changes of the electric properties of biological tissues in such process can be used as a reliable tool for analyzing heating and damage degrees of tissues.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Qixin Zhu ◽  
Hongli Liu ◽  
Yiyi Yin ◽  
Lei Xiong ◽  
Yonghong Zhu

Mechanical resonance is one of the most pervasive problems in servo control. Closed-loop simulations are requisite when the servo control system with high accuracy is designed. The mathematical model of resonance mode must be considered when the closed-loop simulations of servo systems are done. There will be a big difference between the simulation results and the real actualities of servo systems when the resonance mode is not considered in simulations. Firstly, the mathematical model of resonance mode is introduced in this paper. This model can be perceived as a product of a differentiation element and an oscillating element. Secondly, the second-order differentiation element is proposed to simulate the resonant part and the oscillating element is proposed to simulate the antiresonant part. Thirdly, the simulation approach for two resonance modes in servo systems is proposed. Similarly, this approach can be extended to the simulation of three or even more resonances in servo systems. Finally, two numerical simulation examples are given.


2009 ◽  
Vol 4 (2) ◽  
pp. 13-18
Author(s):  
Igor Anufriev ◽  
Aleksandr Golovanov ◽  
Aleksandr Tsimbalyuk ◽  
Oleg Sharypov

Current work covers experimental and theoretical investigation of conic confusers impact on the intensity shock wave, generated in the shock tube by explosion of gunpowder charge. For given conditions optimal geometric characteristics of the confuser, providing maximal pressure in the shock wave front, were found experimentally. The mathematical model was developed and numerical simulation of the axisymmetric shock-wave gas flow in the channel was carried out. Experimentally was shown, that the application of the optimal confuser provides significant increase of the efficiency gasdynamic effect on the combustion of forest combustible materials.


2011 ◽  
Vol 4 (2) ◽  
pp. 435-449 ◽  
Author(s):  
P. E. Farrell ◽  
M. D. Piggott ◽  
G. J. Gorman ◽  
D. A. Ham ◽  
C. R. Wilson ◽  
...  

Abstract. Verification is a process crucially important for the final users of a computational model: code is useless if its results cannot be relied upon. Typically, verification is seen as a discrete event, performed once and for all after development is complete. However, this does not reflect the reality that many geoscientific codes undergo continuous development of the mathematical model, discretisation and software implementation. Therefore, we advocate that in such cases verification must be continuous and happen in parallel with development: the desirability of their automation follows immediately. This paper discusses a framework for automated continuous verification of wide applicability to any kind of numerical simulation. It also documents a range of test cases to show the possibilities of the framework.


Sign in / Sign up

Export Citation Format

Share Document