Study on the Management Model of Pumped Storage Power Station

2013 ◽  
Vol 860-863 ◽  
pp. 2622-2626
Author(s):  
Yan Qing Li ◽  
Chi Dong ◽  
Hao Shan Li ◽  
Zhi Fei Liang

Power generation business models relate to the sustainable development of generation companies. This paper proposes an improved united lease management model for pumped storage power stations. Grid company, power generation companies (thermal power plants and nuclear power plants), and the government department jointly bear the rental fee. The amount of lease fees is determined according to the benefit of each renter. This paper conducted a case study of Huizhou Pumped Storage Power Station. The united power system simulation and auxiliary services compensation were applied to calculate the generation benefit, environmental benefit and dynamic benefit. The results suggest that the total incomes of Huizhou Pumped Storage Power Station are increased and the rental fee is fair and reasonable, indicating the rationality and effectiveness of this new management model.

Author(s):  
Alexey Dragunov ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Pavel Kirillov ◽  
Romney Duffey

It is well known that the electrical-power generation is the key factor for advances in any other industries, agriculture and level of living. In general, electrical energy can be generated by: 1) non-renewable-energy sources such as coal, natural gas, oil, and nuclear; and 2) renewable-energy sources such as hydro, wind, solar, biomass, geothermal and marine. However, the main sources for electrical-energy generation are: 1) thermal - primary coal and secondary natural gas; 2) “large” hydro and 3) nuclear. The rest of the energy sources might have visible impact just in some countries. Modern advanced thermal power plants have reached very high thermal efficiencies (55–62%). In spite of that they are still the largest emitters of carbon dioxide into atmosphere. Due to that, reliable non-fossil-fuel energy generation, such as nuclear power, becomes more and more attractive. However, current Nuclear Power Plants (NPPs) are way behind by thermal efficiency (30–42%) compared to that of advanced thermal power plants. Therefore, it is important to consider various ways to enhance thermal efficiency of NPPs. The paper presents comparison of thermodynamic cycles and layouts of modern NPPs and discusses ways to improve their thermal efficiencies.


2020 ◽  
Vol Special Issue (1) ◽  
Author(s):  
Sugat Tajane ◽  
Manika Kamthan

Mining Industry is often tagged as a polluting sector since it involves since it involves extensive resource exploitation by unsustainable methods. The techniques involved in mining cause tremendous destruction to the environment and health of people living in nearby areas. There is a growing consensus on sustainable and efficient mineral development which will avoid the clash between economic and environmental interests. Deployment of advanced and sustainable technological solutions in the entire mining process, fixing the gaps in its regulatory mechanisms and learning from the successes of specific domestic and international mining operations are certain solutions that have the capacity this sector more productive. The paper provides insights into the problems of mining sector and possible solutions to overcome these problems. It also provides examples of certain best practices adopted by mining corporations for sustainable coal mining. The paper also explores various methods and technologies which can be adopted by Thermal Power Plants to reduce their emissions and simultaneously conserve environment. An empirical study of Dahanu Thermal Power Station located in state of Maharashtra of India has been undertaken for this purpose to study the modern technologies adopted by them to lower their emission levels.


2018 ◽  
Vol 20 (1) ◽  
pp. 1 ◽  
Author(s):  
Sri Sudadiyo

Nowadays, pumps are being widely used in the thermal power generation including nuclear power plants. Reaktor Daya Eksperimental (RDE) is a proposed nuclear reactor concept for the type of nuclear power plant in Indonesia. This RDE has thermal power 10 MWth, and uses a feedwater pump within its steam cycle. The performance of feedwater pump depends on size and geometry of impeller model, such as the number of blades and the blade angle. The purpose of this study is to perform a preliminary design on an impeller of feedwater pump for RDE and to simulate its performance characteristics. The Fortran code is used as an aid in data calculation in order to rapidly compute the blade shape of feedwater pump impeller, particularly for a RDE case. The calculations analyses is solved by utilizing empirical correlations, which are related to size and geometry of a pump impeller model, while performance characteristics analysis is done based on velocity triangle diagram. The effect of leakage, pass through the impeller due to the required clearances between the feedwater pump impeller and the volute channel, is also considered. Comparison between the feedwater pump of HTR-10 and of RDE shows similarity in the trend line of curve shape. These characteristics curves will be very useful for the values prediction of performance of a RDE feedwater pump. Preliminary design of feedwater pump provides the size and geometry of impeller blade model with 5-blades, inlet angle 14.5 degrees, exit angle 25 degrees, inside diameter 81.3 mm, exit diameter 275.2 mm, thickness 4.7 mm, and height 14.1 mm. In addition, the optimal values of performance characteristics were obtained when flow capacity was 4.8 kg/s, fluid head was 29.1 m, shaft mechanical power was 2.64 kW, and efficiency was 52 % at rotational speed 1750 rpm.Keywords: Blade, impeller, pump, RDEDESAIN AWAL IMPELER POMPA AIR UMPAN RDE. Saat ini, pompa digunakan secara luas dalam pembangkit tenaga termal termasuk pembangkit listrik tenaga nuklir. Reaktor Daya Eksperimental (RDE) merupakan konsep reaktor nuklir yang diusulkan untuk tipe PLTN di Indonesia. RDE ini memiliki daya termal 10 MWth, dan menggunakan pompa air umpan dalam siklus uapnya. Kinerja pompa air umpan bergantung pada ukuran dan geometri model impeller, seperti jumlah sudu dan sudut sudu. Tujuan dari penelitian ini adalah untuk membuat rancangan awal impeller pompa air umpan untuk RDE dan untuk mensimulasikan karakteristik kinerjanya. Kode Fortran digunakan sebagai bantuan dalam penghitungan data untuk untuk mengkalkulasi secara cepat bentuk sudu impeller pompa air umpan, terutama pada kasus RDE. Analisis perhitungan dipecahkan menggunakan korelasi empiris yang terkait dengan ukuran dan geometri model impeller pompa, sedangkan analisis karakteristik kinerja dilakukan berdasarkan diagram segitiga kecepatan. Pengaruh bocoran, melalui impeler akibat celah yang diperlukan antara impeller pompa air umpan dan saluran volute, juga dipertimbangkan. Perbandingan antara pompa air umpan HTR-10 dan RDE menunjukkan kemiripan dalam garis tren bentuk kurva. Kurva karakteristik ini akan sangat berguna untuk perkiraan nilai kinerja pompa air umpan RDE. Desain awal pompa air umpan memberikan ukuran dan geometri model sudu impeller dengan 5-sudu, sudut masuk 14,5 derajat, sudut keluar 25 derajat, diameter dalam 81,3 mm, diameter luar 275,2 mm, ketebalan 4,7 mm, dan tinggi 14,1 mm. Selain itu, nilai optimal karakteristik kinerja diperoleh ketika kapasitas aliran 4,8 kg/s, head fluida 29,1 m, tenaga mekanik poros 2,64 kW, dan efisiensi 52 % pada kecepatan putaran 1750 rpm.Kata kunci: Sudu, impeler, pompa, RDE


Author(s):  
M.V. Cherniavskyi

The structure of electricity cost formation for consumers, including depending on the cost of TPP generation, «green» energy and other sources, is investigated, and the main conditions of the efficient regulatory function fulfillment in the power system by thermal power generation in the conditions of Ukraine's course on carbon-free energy are formulated. It is shown that excessive electricity losses in networks and, especially, accelerated increase of the share of «green» generation, much more expensive than nuclear, hydro and thermal, mainly contribute to the growth of electricity costs for non-household consumers and the need to raise tariffs for the population. This accelerated increase directly contradicts the Paris Climate Agreement, according to which plans to reduce Ukraine’s greenhouse gas emissions must be developed taking into account available energy resources and without harming its own economy. The dependences of the specific fuel consumption on the average load and the frequency of start-stops of units are found and it is shown that the increased specific fuel consumption on coal TPPs is an inevitable payment for their use as regulating capacities of UES of Ukraine. In this case, the higher the proportion of «green» generation and a smaller proportion of generating thermal power plants, especially increasing specific fuel consumption. It is proved that in the conditions of growth of the share of «green» generation in Ukraine the share of production of pulverized coal thermal power plants should be kept at the level of not less than 30 % of the total electricity generation. It is substantiated that a necessary condition for coal generation to perform a proper regulatory role in the power system is to introduce both environmental and technical measures, namely — reducing the suction of cold air to the furnace and other boiler elements, restoring condensers and cooling systems, etc. An important factor in reducing the average level of specific fuel consumption is also the reduction of coal burn-out at thermal power plants, where it still remains significant, due to the transfer of power units to the combustion of bituminous coal concentrate. Bibl. 12, Fig. 5, Tab. 5.


Author(s):  
William D. Rezak

One of America’s best kept secrets is the success of its nuclear electric power industry. This paper presents data which support the construction and operating successes enjoyed by energy companies that operate nuclear power plants in the US. The result—the US nuclear industry is alive and well. Perhaps it’s time to start anew the building of nuclear power plants. Let’s take the wraps off the major successes achieved in the nuclear power industry. Over 20% of the electricity generated in the United States comes from nuclear power plants. An adequate, reliable supply of reasonably priced electric energy is not a consequence of an expanding economy and gross national product; it is an absolute necessity before such expansion can occur. It is hard to imagine any aspect of our business or personal lives not, in some way, dependent upon electricity. All over the world (in 34 countries) nuclear power is a low-cost, secure, safe, dependable, and environmentally friendly form of electric power generation. Nuclear plants in these countries are built in six to eight years using technology developed in the US, with good performance and safety records. This treatise addresses the success experienced by the US nuclear industry over the last 40 years, and makes the case that this reliable, cost-competitive source of electric power can help support the economic engine of the country and help prevent experiences like the recent crisis in California. Traditionally, the evaluation of electric power generation facility performance has focused on the ability of plants to produce at design capacity for high percentages of the time. Successful operation of nuclear facilities is determined by examining capacity or load factors. Load factor is the percentage of design generating capacity that a power plant actually produces over the course of a year’s operation. This paper makes the case that these operating performance indicators warrant renewed consideration of the nuclear option. Usage of electricity in the US now approaches total generating capacity. The Nuclear Regulatory Commission has pre-approved construction and operating licenses for several nuclear plant designs. State public service commissions are beginning to understand that dramatic reform is required. The economy is recovering and inflation is minimal. It’s time, once more, to turn to the safe, reliable, environmentally friendly nuclear power alternative.


Author(s):  
Igor L. Pioro

Supercritical Fluids (SCFs) have unique thermophyscial properties and heat-transfer characteristics, which make them very attractive for use in power industry. In this chapter, specifics of thermophysical properties and heat transfer of SCFs such as water, carbon dioxide, and helium are considered and discussed. Also, particularities of heat transfer at Supercritical Pressures (SCPs) are presented, and the most accurate heat-transfer correlations are listed. Supercritical Water (SCW) is widely used as the working fluid in the SCP Rankine “steam”-turbine cycle in fossil-fuel thermal power plants. This increase in thermal efficiency is possible by application of high-temperature reactors and power cycles. Currently, six concepts of Generation-IV reactors are being developed, with coolant outlet temperatures of 500°C~1000°C. SCFs will be used as coolants (helium in GFRs and VHTRs, and SCW in SCWRs) and/or working fluids in power cycles (helium, mixture of nitrogen (80%) and helium (20%), nitrogen and carbon dioxide in Brayton gas-turbine cycles, and SCW/“steam” in Rankine cycle).


2012 ◽  
Vol 550-553 ◽  
pp. 443-446 ◽  
Author(s):  
Jiang Long Yu ◽  
Fang Rui Meng ◽  
Xian Chun Li ◽  
Arash Tahmasebi

This paper provides an overview on the current status of power generation in China using coal gangue. The government regulation towards the use of coal gangue for power generation is introduced. Emission of pollutants and low thermal power plant efficiency are the two major problems for the power industry firing coal gangue. Particulate matter emission control is a problem due to the high ash content. Sulfur emissions from these units are easily controlled mostly through lime/limestone injection and in-situ capture. Overall, efficient power generation using coal gangue is a promising approach to reduce the use of coal resources and reduce the environmental impacts.


Sign in / Sign up

Export Citation Format

Share Document