Research on High Strength Hypoeutectic Al-Si Alloy

2013 ◽  
Vol 873 ◽  
pp. 10-18
Author(s):  
Ting Ting Jia ◽  
Guo Shi Chen ◽  
Shuo Zhang ◽  
Ming Wu ◽  
Hao Ran Geng

In this study, hypoeutectic Al-Si casting alloy was investigated to obtain high strength, according to alloying of Cu Mg, refining of Al-5Ti-B master alloy, modifing of Re and T6 heat treatment. The experimental results show that the mechanical properties of the tested alloy reach peak when addition of Al-5Ti-1B alloy is 1.0% after heat treatment, especially the yield strength, correspondingly, microstructure distribution gets to the best state. When Al-5Ti-1B exceeds 1.0%, the mechanical properties descend gradually. The metallic compounds of Mg2Si phase, CuA12 phase and W phase precipitated along the grain boundary and strengthened dispersively can improve mechanical properties of the tested alloys. The yield strength of samples added 0.1% Re (La 50%, Ce 40%) increases slightly, simultaneously, the tensile strength and elongation decreases. After 0.1% Re, the mechanical properties get down.

2014 ◽  
Vol 936 ◽  
pp. 1796-1800
Author(s):  
Peng Dang ◽  
Xiao Wei Zhang ◽  
Yun Wang ◽  
Qing Zhang ◽  
Chang Liang Li

The influence of annealing temperature on the microstructure, mechanical properties and corrosion resistant of cold rolling zirconium sheet were studied in the manuscript. The experimental results shown that the tensile strength and yield strength of zirconium sheet were decreased and the elongationwas raised with the raising of annealing temperature from 500 °C to 580 °C. The recrystallization are not happened in zirconium sheet at the annealing temperature of 500 °C. Zirconium sheet complete recrystallized and the strength and elongation get a well match at the annealing temperature of 540°C. Zirconium sheet also complete recrystallized at the annealing temperature of 580°C but the crystalline grain has the tendency of growing. The annealing temperature has no effect on the corrosion resistant of zirconium sheet.


2016 ◽  
Vol 61 (2) ◽  
pp. 475-480
Author(s):  
K. Bolanowski

Abstract The paper analyzes the influence of different heat treatment processes on the mechanical properties of low-alloy high-strength steel denoted by Polish Standard (PN) as 10MnVNb6. One of the findings is that, after aging, the mechanical properties of rolled steel are high: the yield strength may reach > 600 MPa, and the ultimate tensile strength is > 700 MPa. These properties are largely dependent on the grain size and dispersion of the strengthening phase in the ferrite matrix. Aging applied after hot rolling contributes to a considerable rise in the yield strength and ultimate tensile strength. The process of normalization causes a decrease in the average grain size and coalescence (reduction of dispersion) of the strengthening phase. When 10MnVNb6 steel was aged after normalization, there was not a complete recovery in its strength properties.


2021 ◽  
Vol 63 (4) ◽  
pp. 303-310
Author(s):  
Feipeng Zhu ◽  
Xiaoxia Gu ◽  
Pengxiang Bai ◽  
Dong Lei

Abstract High-strength steel plays an important role in engineering fields such as infrastructure. For this reason, an accurate determination of its mechanical properties is of critical importance. Considering the inconvenience of conventional mechanical extensometers for the deformation measurement of small-scale specimens, 3D digital image correlation (3D-DIC) was used to measure the deformation of Grade 8.8 bolts and Q690 high-strength steel specimens by means of a uniaxial tensile test, and in this way, stress–strain curves, elastic modulus, yield strength, tensile strength, percentage elongation after fracture, and percentage reduction of area were obtained. Experimental results show that Grade 8.8 bolts and Q690 steel result in higher yield strength and tensile strength than common steel. Moreover, owing to the phenomenon that stress remains constant with strain increase in the yielding stage, the evolution process from elastic deformation to plastic deformation of the specimens during the yielding stage could be studied. Experimental results show that the axial strain of Grade 8.8 bolts increases from 0.3 to 1 % during the yielding stage and for Q690 specimens the corresponding strain increases from 0.4 to 1.8 %.


2008 ◽  
Vol 141-143 ◽  
pp. 145-150 ◽  
Author(s):  
Matthias Bünck ◽  
Fabian Küthe ◽  
Andreas Bührig-Polaczek ◽  
Alexander Arnold ◽  
Bernd Friedrich ◽  
...  

Semi-solid forming offers new potentials for processing of high reactive and hot crack susceptible aluminium-lithium wrought alloys. With the tailored alloy AA1420* (AlLi2.1Mg5.5 +Sc+Zr) a promising material for thixoforming with achievable high strength of up to 500MPa tensile strength and over 400MPa yield strength concomitant with its low density of 2,46g/cm3 is achievable. Due to high solid fractions the effect of solidification shrinkage could be sufficiently decreased with the result of hot-tear-free casting. Simulation supported a critical to cast automotive tie rod was exemplarily manufactured via semisolid- technology with promising results. Furthermore with an improved and advanced heat treatment enhanced mechanical properties, comparable to those of rolled AA1420, were achieved.


2010 ◽  
Vol 97-101 ◽  
pp. 496-499 ◽  
Author(s):  
Zhi Long Zhao ◽  
Zheng Chen ◽  
Lin Liu

The critical resolved stresses (CRSS) of two kinds of Al-Li alloys 2090 and 2090+Ce in which contained trace addition of cerium are examined. The three heat treatment conditions (solution, peak aging and reversion after peak aging) are used in order to identify the influence of precipitates to CRSS. The experimental results show that the strengthening contribution of T1 Phase is greatly different at various orientation with respect to rolling direction, and the precipitation of T1 phase can weaken the anisotropy of mechanical properties. The T1 phase precipitated in subgain boundaries in peak aged and reverted specimens produce a stronger tendency of delaminating along grain boundary, which is a direct reason for the decrease of anisotropic yield strength.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 647 ◽  
Author(s):  
Bingrong Zhang ◽  
Lingkun Zhang ◽  
Zhiming Wang ◽  
Anjiang Gao

In order to obtain high-strength and high-ductility Al–Si–Cu–Mg alloys, the present research is focused on optimizing the composition of soluble phases, the structure and morphology of insoluble phases, and artificial ageing processes. The results show that the best matches, 0.4 wt% Mg and 1.2 wt% Cu in the Al–9Si alloy, avoided the toxic effect of the blocky Al2Cu on the mechanical properties of the alloy. The addition of 0.6 wt% Zn modified the morphology of eutectic Si from coarse particles to fine fibrous particles and the texture of Fe-rich phases from acicular β-Fe to blocky π-Fe in the Al–9Si–1.2Cu–0.4Mg-based alloy. With the optimization of the heat treatment parameters, the spherical eutectic Si and the fully fused β-Fe dramatically improved the ultimate tensile strength and elongation to fracture. Compared with the Al–9Si–1.2Cu–0.4Mg-based alloy, the 0.6 wt% Zn modified alloy not only increased the ultimate tensile strength and elongation to fracture of peak ageing but also reduced the time of peak ageing. The following improved combination of higher tensile strength and higher elongation was achieved for 0.6 wt% Zn modified alloy by double-stage ageing: 100 °C × 3 h + 180 °C × 7 h, with mechanical properties of ultimate tensile strength (UTS) of ~371 MPa, yield strength (YS) of ~291 MPa, and elongation to fracture (E%) of ~5.6%.


Alloy Digest ◽  
2021 ◽  
Vol 70 (9) ◽  

Abstract Raffmetal EN AB-Al Si7Mg0.3 (EN AB-42100) is a heat-treatable, Al-Si-Mg casting alloy in ingot form for remelting. It is used extensively for producing sand, permanent mold and investment castings for applications requiring a combination of excellent casting characteristics, high strength with good elongation, and good corrosion resistance. This alloy can be produced to a wide range of mechanical properties by making small adjustments to the magnesium content and/or heat treatment. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-480. Producer or source: Raffmetal S.p.A.


2019 ◽  
Vol 944 ◽  
pp. 64-72
Author(s):  
Qing Feng Yang ◽  
Cun Juan Xia ◽  
Ya Qi Deng

Bulky sample was made by using TIG wire and arc additive manufacturing (WAAM) technology, in which Ф1.6 mm filler wire of in-situ TiB2/Al-Si composites was selected as deposition metal, following by T6 heat treatment. The microstructure and mechanical properties of the bulky sample before and after heat treatment were analyzed. Experimental results showed that the texture of the original samples parallel to the weld direction and perpendicular to the weld direction was similar consisting of columnar dendrites and equiaxed crystals. After T6 heat treatment, the hardness of the sample was increased to 115.85 HV from 62.83 HV, the yield strength of the sample was 273.33 MPa, the average tensile strength was 347.33 MPa, and the average elongation after fracture was 7.96%. Although pore defects existed in the fracture, yet the fracture of the sample was ductile fracture.


2006 ◽  
Vol 324-325 ◽  
pp. 671-674
Author(s):  
Wang Xiang ◽  
Xiao Hua Xue

TiCp/ZA-12 composites have been fabricated by XDTM method and stirring-casting techniques. The tests for mechanical properties reveal that the tensile strength and strength increase with increasing fraction of TiC particles. When the fraction of TiC particles increase up to 10%, the tensile strength and yield strength are 390MPa and 340MPa, respectively and they increase by 11% and 17% than that of matrix respectively. From the analysis of fractography we can see that mixed fracture of cleavage fracture and dimple fracture exists in the TiCp/ZA-12 composites, and fractured particles are not found. Finally the fracture model of composites has been established based on the experimental results.


2015 ◽  
Vol 727-728 ◽  
pp. 322-326 ◽  
Author(s):  
Shi Lu Zhao ◽  
Zhen Zhang ◽  
Lian Chong Qu ◽  
Jun Zhang ◽  
Jian Ming Wang ◽  
...  

Effects of heat treatment process of quenching and tempering under different temperature conditions on mechanical properties of X70 grade pipeline steel bends were studied. Brinell hardness, yield strength, tensile strength, elongation and impact absorbing energy of the bends were tested by using hardness tester, cupping machine and impact testing machine, respectively. It shows that the best heat treatment process of the X70 grade pipeline steel bends is quenching at 890 °Cand thermal insulation for 26 min then water cooling followed by tempering at 590 °C and thermal insulation for 60 min then air cooling. Furthermore, the resulting hardness, yield strength, tensile strength, yield ratio, elongation and impact absorbing energy reach HB230, 595 MPa, 725 MPa, 0.82, 28% and 300 J respectively, which has excellent comprehensive mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document