Atomic Arrangement and Formation Mechanism of c-Axis Oriented ZnO Thin Films Grown on p-Si Substrates

2007 ◽  
Vol 124-126 ◽  
pp. 93-96
Author(s):  
N.K. Park ◽  
H.S. Lee ◽  
Y.S. No ◽  
Tae Whan Kim ◽  
Jeong Yong Lee ◽  
...  

The X-ray diffraction (XRD) pattern for the ZnO films grown on Si (100) substrates indicates that the grown ZnO films have a strong c-axis orientation. The pole figure indicates that ZnO thin films have columnars with the grains of the [0002] crystallographic axis perpendicular to the Si (100) substrate, indicative of the random rotational orientations along the c-axis. Selected area electron diffraction pattern (SADP) of the ZnO/Si (100) heterostructures shows that the ZnO preferential oriented film is formed on the Si substrate. A possible atomic arrangement of the crystal structure and the formation mechanism of the c-axis orientated ZnO thin films grown on p-Si substrates are discussed on the basis of the XRD, the pole figure, and SADP results.

2014 ◽  
Vol 881-883 ◽  
pp. 1117-1121 ◽  
Author(s):  
Xiang Min Zhao

ZnO thin films with different thickness (the sputtering time of AlN buffer layers was 0 min, 30 min,60 min, and 90 min, respectively) were prepared on Si substrates using radio frequency (RF) magnetron sputtering system.X-ray diffraction (XRD), atomic force microscope (AFM), Hall measurements setup (Hall) were used to analyze the structure, morphology and electrical properties of ZnO films.The results show that growth are still preferred (002) orientation of ZnO thin films with different sputtering time of AlN buffer layer,and for the better growth of ZnO films, the optimal sputtering time is 60 min.


2004 ◽  
Vol 829 ◽  
Author(s):  
S. P. Heluani ◽  
G. Simonelli ◽  
M. Villafuerte ◽  
G. Juarez ◽  
A. Tirpak ◽  
...  

ABSTRACTStructural and electronic transport properties of polycrystalline ZnO thin films, prepared by pulsed laser deposition, have been investigated. The films were deposited on glass and Si3N4/Si substrates using O2 and N2 atmospheres. X-ray analysis revealed preferential c-axis orientation perpendicular to the sample substrate. Films deposited under relatively high O2 pressure were highly resistive. However, the conductivity σ increased while the films were irradiated with ultraviolet light, showing an Arrhenius (In σ ∝ T-1) dependence as a function of temperature. The ZnO film deposited in N2 atmosphere exhibited at room temperature a resistivity ∼ 1 Ω cm, and a sheet carrier concentration ∼ 5 1012 cm-2. The variation of the conductivity with temperature, in the range 60 – 150 K, follows a In σ ∝ T-1/4 dependence characteristic of variable range hopping. An analysis of the experimental results of conductivity as a function of temperature, in terms of possible doping effects, as well as conduction mechanisms is presented.


2011 ◽  
Vol 287-290 ◽  
pp. 2347-2350
Author(s):  
Rong Fan ◽  
Lin Jun Wang ◽  
Jian Huang ◽  
Ke Tang ◽  
Ji Jun Zhang ◽  
...  

ZnO thin films were deposited by radio frequency (R. F.) magnetron sputtering on various diamond film substrates with different surface roughness. The influence of surface roughness on structural properties and surface morphology of ZnO thin films was investigated by X-ray diffraction (XRD) and atom force microscopy (AFM), respectively. Only on the nanocrystalline and free-standing diamond substrates, ZnO films with preferential c-axis orientation and smooth surface were obtained.


2017 ◽  
Vol 05 (01) ◽  
pp. 1750004
Author(s):  
R. Vettumperumal ◽  
S. Kalyanaraman ◽  
R. Thangavel

Nanocrystalline ruthenium (Ru)-doped ZnO thin films on sapphire substrate was prepared using sol–gel method by spin coating technique. The structural and I-V characteristics of Ru doped ZnO thin films were studied from the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) analysis and Raman spectroscopy. X-ray diffraction (XRD) results revealed that the deposited films belonged to hexagonal wurtzite structure with c-axis orientation. It is also confirmed from the Raman spectra. Enhancement of longitudinal optical (LO) phonon is observed by the strong electron–phonon interaction. An observed increment in sheet resistance with increase in dopant percentage of Ru (1–2[Formula: see text]mol%) in ZnO films was found and better I-V characteristic behavior was observed at 1[Formula: see text]mol% of Ru-doped ZnO thin films. Trap limited current flow inside the material was calculated from the log I versus log V plot in the higher voltage region.


2004 ◽  
Vol 39 (10) ◽  
pp. 3525-3528 ◽  
Author(s):  
H. S. Lee ◽  
J. Y. Lee ◽  
T. W. Kim ◽  
D. W. Kim ◽  
W. J. Cho

2007 ◽  
Vol 90 (18) ◽  
pp. 181907 ◽  
Author(s):  
J. W. Shin ◽  
J. Y. Lee ◽  
Y. S. No ◽  
J. H. Jung ◽  
T. W. Kim ◽  
...  

2002 ◽  
Vol 747 ◽  
Author(s):  
Kenji Ebihara ◽  
Tamiko Ohshima ◽  
Tomoaki Ikegami ◽  
Jes Asumussen ◽  
Raj K. Thareja

ABSTRACTWe report on the attempt to fabricate p-type ZnO thin films using various doping techniques based on the pulsed laser deposition (PLD). As an accepter, we have doped the N atom by using high purity nitric monoxide (NO) ambient gas. NO is dissociated into N and O at an energy of 6.5 eV which is lower than at N2 (9.76 eV). Moreover the dissociation reaction of NO is simpler than other nitrogenous gases such as N2O, NO2, and NH3. One of our doping techniques is co-doping of Ga and N atom by ablating ZnO:Ga target in NO gas, and another is the ablation of the metal Zn target in NO gas. Both of Ga and N co-doped ZnO films and N doped ZnO films have c-axis orientation as well as undoped ZnO films. The surfaces of these doped films are rough while the undoped ZnO thin film is very smooth and have hexagonally shaped grains. We found it possible to fabricate the p-type ZnO film by ablating the metal Zn target in NO gas.


2014 ◽  
Vol 970 ◽  
pp. 120-123 ◽  
Author(s):  
Peh Ly Tat ◽  
Karim bin Deraman ◽  
Wan Nurulhuda Wan Shamsuri ◽  
Rosli Hussin ◽  
Zuhairi Ibrahim

Undoped nanocrystalline ZnO thin films were deposited onto the glass substrates via the low cost sol-gel dip coating method. The as-grown ZnO films were annealed at the temperatures ranging from 400 °C to 550 °C. The X-ray diffraction (XRD) pattern revealed that the annealed ZnO films were polycrystalline with hexagonal wurtzite structure and majority preferentially grow along (002) c-axis orientation. Atomic force microscopy (AFM) micrographs showed the improvement of RMS roughness and grain size as annealing temperature increased. The ZnO films that annealed at 500 oC exhibited the lowest resistivity value.


2009 ◽  
Vol 24 (6) ◽  
pp. 2006-2010 ◽  
Author(s):  
J.W. Shin ◽  
J.Y. Lee ◽  
Y.S. No ◽  
T.W. Kim ◽  
W.K. Choi

High-resolution transmission electron microscopy (HRTEM) images of annealed ZnO thin films showed the domain boundaries of a (0) plane with a transition zone and a (1) plane without a transition zone. The 30° in-plane rotation domain boundaries were formed in the ZnO thin films because the angle of the c-axis was tilted 3.5° in comparison with that of neighboring 30° in-plane rotation domains to reduce the misfit strain energy. The atomic arrangement variations of 30° in-plane rotation domain boundaries in ZnO thin films grown on Si substrates due to thermal annealing are described.


Sign in / Sign up

Export Citation Format

Share Document