GROWTH OF SPUTTERED-ALUMINUM OXIDE THIN FILMS ON Si (100) AND Si (111) SUBSTRATES WITH Al2O3 BUFFER LAYER

2016 ◽  
Vol 23 (03) ◽  
pp. 1650016
Author(s):  
WEI QIANG LIM ◽  
SUBRAMANI SHANMUGAN ◽  
MUTHARASU DEVARAJAN

Aluminum oxide (Al2O3) thin films with Al2O3 buffer layer were deposited on Si (100) and Si (111) substrates using RF magnetron sputtering of Al2O3 target in Ar atmosphere. The synthesized films were then annealed at the temperature of 400[Formula: see text]C, 600[Formula: see text]C and 800[Formula: see text]C in nitrogen (N2) environment for 6[Formula: see text]h. Structural properties and surface morphology are examined by using X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Atomic Force Microscope (AFM). XRD analysis indicated that different orientation of Al2O3 were formed with different intensities due to increase in the annealing temperature. From FESEM cross-section analysis results, it is observed that the thickness of films were increased as the annealing temperature increased. EDX analysis shows that the concentration of aluminum and oxygen on both the Si substrates increased with the increase in annealing temperature. The surface roughness of the films were found to be decreased first when the annealing temperature is increased to 400[Formula: see text]C, yet the roughness increased when the annealing temperature is further increased to 800[Formula: see text]C.

2014 ◽  
Vol 881-883 ◽  
pp. 1117-1121 ◽  
Author(s):  
Xiang Min Zhao

ZnO thin films with different thickness (the sputtering time of AlN buffer layers was 0 min, 30 min,60 min, and 90 min, respectively) were prepared on Si substrates using radio frequency (RF) magnetron sputtering system.X-ray diffraction (XRD), atomic force microscope (AFM), Hall measurements setup (Hall) were used to analyze the structure, morphology and electrical properties of ZnO films.The results show that growth are still preferred (002) orientation of ZnO thin films with different sputtering time of AlN buffer layer,and for the better growth of ZnO films, the optimal sputtering time is 60 min.


2012 ◽  
Vol 545 ◽  
pp. 290-293
Author(s):  
Maryam Amirhoseiny ◽  
Hassan Zainuriah ◽  
Ng Shashiong ◽  
Mohd Anas Ahmad

We have studied the effects of deposition conditions on the crystal structure of InN films deposited on Si substrate. InN thin films have been deposited on Si(100) substrates by reactive radio frequency (RF) magnetron sputtering method with pure In target at room temperature. The nitrogen gas pressure, applied RF power and the distance between target and substrate were 2×10-2 Torr, 60 W and 8 cm, respectively. The effects of the Ar–N2 sputtering gas mixture on the structural properties of the films were investigated by using scanning electron microscope, energy-dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction techniques.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 921
Author(s):  
Ashwin Kumar Saikumar ◽  
Sreeram Sundaresh ◽  
Shraddha Dhanraj Nehate ◽  
Kalpathy B. Sundaram

Thin films of CuGa2O4 were deposited using an RF magnetron-sputtering technique for the first time. The sputtered CuGa2O4 thin films were post-deposition annealed at temperatures varying from 100 to 900 °C in a constant O2 ambience for 1.5 h. Structural and morphological studies were performed on the films using X-ray diffraction analysis (XRD) and a Field Emission Scanning Electron Microscope (FESEM). The presence of CuGa2O4 phases along with the CuO phases was confirmed from the XRD analysis. The minimum critical temperature required to promote the crystal growth in the films was identified to be 500 °C using XRD analysis. The FESEM images showed an increase in the grain size with an increase in the annealing temperature. The resistivity values of the films were calculated to range between 6.47 × 103 and 2.5 × 108 Ωcm. Optical studies were performed on all of the films using a UV-Vis spectrophotometer. The optical transmission in the 200–800 nm wavelength region was noted to decrease with an increase in the annealing temperature. The optical bandgap value was recorded to range between 3.59 and 4.5 eV and showed an increasing trend with an increase in the annealing temperature.


2012 ◽  
Vol 560-561 ◽  
pp. 820-824
Author(s):  
Yue Zhi Zhao ◽  
Fei Xiong ◽  
Guo Mian Gao ◽  
Shi Jing Ding

Mn-doped ZnO thin films were prepared on SiO2substrates by using a radio-frequency(rf) magnetron sputtering in order to investigate structure and optical proprieties of the films. X-ray diffraction (XRD), Atomic force microscope (AFM) and UV-VIS spectrophotometry were employed to characterize the Mn-doped ZnO films. The results showed that the shape of the XRD spectrum was remarkably similar to that of the un-doped ZnO film; the film had mainly (002) peak, and indicate that the structure of the films was not disturbed by Mn-doped. The film had rather flat surfaces with the peak-to-tail roughness of about 25nm. Mn-doping changed the band gap of the films, which increased with the increase of the Mn content.


2013 ◽  
Vol 669 ◽  
pp. 181-184
Author(s):  
Nan Ding ◽  
Li Ming Xu ◽  
Bao Jia Wu ◽  
Guang Rui Gu

Zinc oxide (ZnO) films were prepared on Si substrates and then aluminum nitride (AlN) films were deposited on ZnO films by radio frequency (RF) magnetron sputtering. The crystal orientation, crystallite structure and surface morphology of AlN/ZnO films were characterized by X-ray diffraction (XRD), Raman spectrum and scanning electron microscopy (SEM). It was indicated that the AlN films were closely deposited on the ZnO film and had good crystallinity. Moreover, about 1μm-sized crystal particles with high c-axial orientation distributed uniformly on the AlN/ZnO film surface. It was indicated that ZnO could be a promising candidate as buffer layer for preparation of AlN thin films.


2012 ◽  
Vol 151 ◽  
pp. 314-318
Author(s):  
Ching Fang Tseng ◽  
Cheng Hsing Hsu ◽  
Chun Hung Lai

This paper describes microstructure characteristics of MgAl2O4 thin films were deposited by sol-gel method with various preheating temperatures and annealing temperatures. Particular attention will be paid to the effects of a thermal treatment in air ambient on the physical properties. The annealed films were characterized using X-ray diffraction. The surface morphologies of treatment film were examined by scanning electron microscopy and atomic force microscopy. At a preheating temperature of 300oC and an annealing temperature of 700oC, the MgAl2O4 films with 9 μm thickness possess a dielectric constant of 9 at 1 kHz and a dissipation factor of 0.18 at 1 kHz.


2012 ◽  
Vol 626 ◽  
pp. 168-172
Author(s):  
Samsiah Ahmad ◽  
Nor Diyana Md Sin ◽  
M.N. Berhan ◽  
Mohamad Rusop

Zinc Oxide (ZnO) thin films were deposited onto SiO2/Si substrates using radio frequency (RF) magnetron sputtering method as an Ammonia (NH3) sensor. The dependence of RF power (50~300 Watt) on the structural properties and sensitivity of NH3sensor were investigated. XRD analysis shows that regardless of the RF power, all samples display the preferred orientation on the (002) plane. The results show that the ZnO deposited at 200 Watt display the highest sensitivity value which is 44%.


2013 ◽  
Vol 446-447 ◽  
pp. 306-311 ◽  
Author(s):  
Sudhanshu Dwivedi ◽  
Somnath Biswas

Mixed phase TiO2 thin films of rutile and anatase type crystal orientations were deposited on Si substrates by pulsed laser deposition (PLD) technique. When annealed at 800°C at 1 mbar oxygen pressure for 3 h, the deposited films transform into a single phase of rutile type. Structural and morphological studies of the as-deposited and annealed films were performed with X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FTIR), Raman spectroscopy, and atomic force microscopy (AFM). Photoluminescence (PL) spectroscopy was used for optical characterization of the annealed thin films.


2021 ◽  
Author(s):  
srinivasa varaprsad H ◽  
sridevi P. V ◽  
Satya Anuradha M ◽  
Srinivas Pattipaka ◽  
pamu D

Abstract Perovskites are important composites in the area of multidisciplinary applications. It is achieved by carefully choosing and tuning the properties of the thin-film at the deposition. In this paper, ZnTiO3 (ZTO) thin-films were being deposited on quartz and N-Si substrates by RF magnetron sputtering. The thin-films were developed at room temperature, oxygen percentage levels varying from 0 to 100, and annealed at 600oC. The electrical, optical, morphological, and structural properties were analyzed as a function of oxygen mixing percentage (OMP). The crystallinity of the cubic structured ZTO thin-film is found to be high at 25 OMP, and it is gradually decreased with increased OMP. The surface morphology of the thin-film is observed, and roughness is measured from the atomic force microscope. Raman Spectroscopy investigated the phase formation and the vibrational modes of the thin-film with their spectral de-convolution. The ZTO thin-films optical properties were investigated using transmittance spectra. The ZTO thin-film indicated the highest refractive index of 2.46, at 633nm with optical bandgap values of 3.57 eV, with a thickness of 145nm and 25 OMP. The refractive index, thin-film thickness, and excitation coefficient were analyzed using the Swanepoel envelope technique. Electrical characteristics of ZTO thin-film are measured from the optimized conditions of the thin-film with conventional thermionic emission (TE) technique.


2012 ◽  
Vol 252 ◽  
pp. 211-215
Author(s):  
Xiao Hua Sun ◽  
Shuang Hou ◽  
Zhi Meng Luo ◽  
Cai Hua Huang ◽  
Zong Zhi Hu

Bismuth zinc niobate titanium (Bi1.5Zn0.5 Nb0.5Ti1.5O7) (BZNT) thin films were deposited on PtTiSiO2Si substrates by radio frequency (rf) magnetron sputtering. The microstructure, surface morphology, stress, dielectric and tunable properties of thin films were investigated as a function of initial annealing temperature. It’s found that high initial annealing temperature increases the grain size, dielectric constant and tunability of BZNT films simultaneously and decreases the tensile stress in films. The BZNT thin film annealed from 500 °C to 700 °C shows the highest FOM value of 45.67 with the smallest dielectric loss and upper tunability.


Sign in / Sign up

Export Citation Format

Share Document