Optimization of Furfural Production from Xylose by RSM Using Chromium Sulfate as Catalyst

2014 ◽  
Vol 881-883 ◽  
pp. 29-34
Author(s):  
Ye Zhang ◽  
Ming Qiang Chen ◽  
Jun Wang

Optimization of chromium sulfate catalyzed conversion conditions of xylose into furfural was studied by response surfacemethodology (RSM). A central composite design (CCD) was used to determine the effects of independent variables, including temperature (120-160°C), time (30-150min), catalyst loading (1-5mmol) and moles of xylose (2.5-12.5mmol) on furfural yield, xylose conversion and solid residue. The surface response analysis revealed that temperature, time, catalyst loading and moles of xylose had a strong influence on the furfural yield, whereas moles of xylose was found to be notsignificant for xylose conversion. The solid residue was affected by temperature, time and moles of xylose. The maximumpredicted furfural yield was 45.07% at temperature of 150°C, time of 12min, catalyst loading of 2 mmol and moles of xylose of 10mmol. Under this condition, xylose conversion could be reached 100%.

Author(s):  
Pranabendu Mitra ◽  
Kyu -Seob Chang ◽  
Dae-Seok Yoo

Kaempferol, a strong antioxidant, was extracted from Cuscuta reflexa (a medicinal plant) using supercritical CO2 and separated using thin-layer chromatography, column chromatography and HPLC analysis. A rotatable central composite design was used to determine the influence of process variables and arrive at optimal processing conditions in the supercritical CO2 extraction process of kaempferol. The kaempferol yield was effectively modelled as a function of the independent variables (temperature, time and pressure). The kaempferol yield increased with the increasing of temperature and time and decreasing of pressure of the supercritical CO2 extraction process. The predicted kaempferol yield at the optimum point was 52.92 µg/g and the optimum conditions were 50.7°C for 132.6 min and 15.9 MPa.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Huma Ali ◽  
Savita Dixit

Objective. To optimize the conditions for the extraction of alkaloid palmatine fromTinospora cordifoliaby using response surface methodology (RSM) and study its anticancerous property against 7,12-dimethylbenz(a)anthracene (DMBA) induced skin carcinogenesis in Swiss albino mice.Methods. The effect of three independent variables, namely, extraction temperature, time, and cycles was investigated by using central composite design. A single topical application of DMBA (100 μg/100 μL of acetone), followed 2 weeks later by repeated application of croton oil (1% in acetone three times a week) for 16 weeks, exhibited 100 percent tumor incidence (Group 2).Results. The highest yield of alkaloid fromTinospora cordifoliacould be achieved at 16 hours of extraction time under 40°C with 4 extraction cycles. Alkaloid administration significantly decreases tumor size, number, and the activity of serum enzyme when compared with the control (Group 2). In addition, depleted levels of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase and increased DNA damage were restored in palmatine treated groups.Conclusion. The data of the present study clearly indicate the anticancer potential of palmatine alkaloid in DMBA induced skin cancer model in mice.


2021 ◽  
pp. 152808372098847
Author(s):  
Prabu Krishnasamy ◽  
G Rajamurugan ◽  
B Muralidharan ◽  
Akshay P Arbat ◽  
Bendre Parag Kishorkumar

Natural fiber-based composite materials have found wide applications in Automotive, Aerospace, and Marine Industries. The current study presents the composite preparation, mechanical characterization, and machining behavior of hybrid composite. The fabricated hybrid composite consists of natural fibers (hemp and flax), resin (epoxy and hardener), and S-2304 wire mesh of different orientations (45° and 90°). The mechanical characterization was performed through tensile, flexural, impact, and hardness with ASTM samples. The FRW45 hybrid composite had shown an excellent tensile strength of 43 MPa and 31.57% higher than that of FRW90. Moreover, the FRW45 (82 MPa) flexural strength has shown better results than the HRW45 (76 MPa) composite. The machining performance was studied by drilling experiments, designed by the central composite design (CCD) to study the significant input parameters such as type of composite, speed, and feed rate. The obtained results revealed that torque reduces with the enhancement in feed rate for all types of composites. It was also noticed that at 500 rpm spindle speed, the delamination factor was comparatively 35.03% lower in HRW45 and 58% in HRW90 compared to HR composite. The fiber fracture voids and delamination failures were observed through fractography analysis.


2020 ◽  
Vol 36 (6) ◽  
pp. 1088-1095
Author(s):  
Le Thi Bich Nguyet ◽  
Vinh Tien Nguyen

In this study, we developed a starch-gelatin film incorporated with synthesized curcumin to be used as a pH-sensitive smart material for food packaging. The film-forming mixture contained five components: starch, gelatin, glycerol, acetic acid and curcumin. The interactions of the components and their effects on the film properties were investigated by using response surface methodology with central composite experimental design. The results showed impacts of the contents of these components as independent variables on tensile strength, elongation at break, Young’s modulus and solubility of the films. The contents of starch, gelatin and glycerol significantly affect these properties, while acetic acid and curcumin do not (p<0.05). Also, it was shown that the incorporation of curcumin provided the film with the capacity to sense pH changes from neutral to basic (yellow at pH ≤ 8 and orange-red at pH ≥ 9).


2018 ◽  
Vol 54 (4B) ◽  
pp. 138
Author(s):  
Tran Thi Hien

The conditions of the hydrothermal carbonization process to produce biochar from coffee husk will be optimized for maximum yield. Besides, response surface methodology (RSM) and central composite face-centered (CCF) method will be used in designing experiments. Also, the optimal value of factors such as temperature, time and biomass: water ratio which can provide a maximum yield of biochar will be worked out using Modde 5.0. As a result, the optimal conditions for maximum yield of biochar was obtained as temperature of 180 oC, 3.5 h and biomass: water ratio of 15 %. It can also be concluded that temperature has greater impact on the transformation of biochar than time and biomass: water ratio.


2014 ◽  
Vol 625 ◽  
pp. 920-923 ◽  
Author(s):  
Halifah Pagarra ◽  
Roshanida Abd Rahman ◽  
Rosli Md. Illias ◽  
Nor Azah Ramli

A central composite design was employed to optimize the extraction of pectin from Nephrolepis biserrata leaves. The independent variables were pH (1.5 to 2.5), extraction time (60 to 120 minutes) and temperature (60oC to 100oC). The combined effect of these variables on yields of pectin was investigated. The results showed that the yield of extracted pectin ranged from 3.76% to 8.50% (w/w, based on dry weight of Nephrolepis biserrata leaves). The optimum condition for the yield of pectin extraction was predicted at pH (1.5), extraction time (76.25 minutes) and temperature (100oC). Under the optimum condition, the actual pectin yield was 8.18%, which was below the predicted extraction condition of 8.316 %. The characteristics were 47.52% galacturonic acid and 83.71% degree of esterification. Keyword: Nephrolepis biserrata leaves, Extraction, Pectin, RSM, Characterization.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 557
Author(s):  
Shaolong Sun ◽  
Xuefei Cao ◽  
Huiling Li ◽  
Yingbo Zhu ◽  
Yijing Li ◽  
...  

Efficient production of furfural from cornstalk in 2-Methyltetrahydrofuran/aqueous (MTHF/H2O) biphasic system via parameter regulation (e.g., VMTHF/VH2O, temperature, time, and H2SO4 concentration) was proposed. The resulting solid residues achieved from the different MTHF/H2O system conditions for furfural production were also to prepare glucose by adding cellulases to increase the high-value applications of cornstalk. A maximum furfural yield (68.1%) was obtained based on reaction condition (VMTHF:VH2O = 1:1, 170 °C, 60 min, 0.05 M H2SO4). Among these parameters, the concentration of H2SO4 had the most obvious effect on the furfural production. The glucose yields of the residues acquired from different MTHF/H2O processes were enhanced and then a maximum value of 78.9% based on the maximum furfural production conditions was observed. Single factor may not be sufficient to detail the difference in glucose production, and several factors affected the hydrolysis efficiency of the residues. Overall, the MTHF/H2O system effectively converted cornstalk into furfural and glucose via a simple and environment-friendly process, thus was an ideal manner for the food industries.


2015 ◽  
Vol 754-755 ◽  
pp. 1107-1112
Author(s):  
Rozaini Abdullah ◽  
Jumat Salimon ◽  
Anis Atikah Ahmad

The aim of this study was to optimize the monoepoxidation process of linoleic acid obtained from Malaysian Jatropha curcas oil using central composite design (CCD). There were four independent variable factors had been studied which involved reaction temperature (X1), reaction time (X2), catalyst loading (X3) and H2O2 concentration (X4). Thirty experiments were carried out based on the experimental design responses obtained. The results showed that the optimum condition was obtained at catalyst loading of 0.11% (w/w) methyltrioxorhernium (VII) (MTO), H2O2 mole of 99%, reaction temperature of 58.41oC for 5 hours. The central composite design was proven to be simpler method, time saving and required less samples compared to the conventional method.


Sign in / Sign up

Export Citation Format

Share Document