A Study on Application of Surfactants in Cemented Carbides Ball Milling

2014 ◽  
Vol 893 ◽  
pp. 100-104
Author(s):  
Tang Kai ◽  
Yan Jie

Several surfactants were studied in cemented carbides ball milling in this paper by analyzing cemented carbides mechanical properties and SEM images. Appropriate surfactants used in ball milling were selected to replace commonly used surfactant, stearic acid. Impacts of surfactants on hardness, magnetic force and magnetic saturation were also discussed. Oleic acid and AEO-3 as the better surfactant than stearic acid were selected after experiments. How containing oxygen compound affects the cemented carbide mechanical property cannot be recommended at this stage; further investigations are required.

Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2224 ◽  
Author(s):  
Minai Zhang ◽  
Zhun Cheng ◽  
Jingmao Li ◽  
Shengguan Qu ◽  
Xiaoqiang Li

In this paper, WC-10Ni3Al cemented carbides were prepared by the powder metallurgy method, and the effects of ball-milling powders with two different organic solvents on the microstructure and mechanical properties of cemented carbides were studied. We show that the oxygen in the organic solvent can be absorbed into the mixed powders by ball-milling when ethanol (CH3CH2OH) is used as a ball-milling suspension. This oxygen leads to the formation of α-Al2O3 during sintering, which improves the fracture toughness, due to crack deflection and bridging, while the formation of η-phase (Ni3W3C) inhibits the grain growth and increases the hardness. Alternatively, samples milled using cyclohexane (C6H12) showed grain growth during processing, which led to a decrease in hardness. Therefore, the increase of oxygen content from using organic solvents during milling improves the properties of WC-Ni3Al composites. The growth of WC grains can be inhibited and the hardness can be improved without loss of toughness by self-generating α-Al2O3 and η-phase (Ni3W3C).


2012 ◽  
Vol 193-194 ◽  
pp. 762-769 ◽  
Author(s):  
Hui Wang ◽  
Hai Xia Liu ◽  
Cai Hong Zhuang

Abstract:Polyurethane concrete which applies to the rapid repair highway pavement was systematically researched. Influences on mechanical properties of the polyurethane concrete of cement-dinas and binder-aggregate ratio, curing agent dosage, thinning agent dosage, etc. were analyzed in this paper. Furthermore, the optimal formulation materials were gotten to use in the repairment of used-broken cement blocks in the experiment. Simultaneously, the microstructure of polyurethane concrete and their adhesive situation bewteen waste cement blocks were observed through scanning electron microscope (SEM). The results show that the flexural strength of the specimen for two hours can reach to 6.67 MPa, and the compressive strength can reach to 9.15MPa, which can achieve the rapid pavement repair on highway in two hours, and it is superior to the related Chinese Standard. Besides the SEM images indicate that polyurethane molecular and aggregate are firmly bonded to each other as well as the cementation between polyurethane concrete and concretes, it means that the material has characteristic of rapid repair as well as good mechanical property.


2010 ◽  
Vol 434-435 ◽  
pp. 76-78
Author(s):  
Xiao Yan Wang ◽  
Jian Li ◽  
Rui Fen Wu ◽  
Wei Pan

Ti(C,N) cermets were prepared by SPS method. The effects of nickel salt coating as well as ball milling times on the microstructure and mechanical properties of the cermets were investigated. SEM images shows that the nickel was coated homogeneously on the surface of Ti(C,N) powders by mixing Ni salt and Ti(C,N) powder. The grains of Ti(C,N)-based cermets became finer with increasing ball milling time. The flexural strength increased when the balling milling was below 48h, and then decreased with increasing of ball milling time, which was due to the decrease of the flake structure in cermets.


2012 ◽  
Vol 476-478 ◽  
pp. 1214-1217 ◽  
Author(s):  
Chong Cai Zhang ◽  
Quan Wang ◽  
Qun Qun Yuan ◽  
Long Wang

In this paper, the WC-16TiC-xTaC-10Co mixture mixed by WC 0.52μm, (W, Ti, Ta)C 2.9μm and Co1.36μm and prepared by high-energy ball milling, changed the VC and Cr3C2 adding amount. After ball milling for 60 hours, an average particle size of 220nm powder was prepared and it was cold isostatic pressed at 300MPa and vacuum sintered at 1410°C. The physical properties and the micrographs of samples were detected. The main conclusions are as follow: the coercivity and hardness increase and Cobalt magnetic decreases with the content of Cr3C2 increasing, the transverse rupture strength (TRS) does not vary. The VC and Cr3C2 inhibit the growth of WC grain, but can’t inhibite the (W, Ti, Ta)C grain growth effectively.


2020 ◽  
Vol 13 ◽  
Author(s):  
V. Arumugaprabu ◽  
K.Arun Prasath ◽  
S. Mangaleswaran ◽  
M. Manikanda Raja ◽  
R. Jegan

: The objective of this research is to evaluate the tensile, impact and flexural properties of flax fiber and basalt powder filled polyester composite. Flax fiber is one of the predominant reinforcement natural fiber which possess good mechanical properties and addition of basalt powder as a filler provides additional support to the composite. The Composites are prepared using flax fiber arranged in 10 layers with varying weight percentage of the basalt powder as 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.% and 30 wt.% respectively. From the results it is inferred that the composite combination 10 Layers of flax / 5 wt.%, basalt Powder absorbs more tensile load of 145 MPa. Also, for the same combination maximum flexural strength is about 60 MPa. Interestingly in the case of impact strength more energy was absorbed by 10 layers of flax and 30 wt.% of basalt powder. In addition, the failure mechanism of the composites also discussed briefly using SEM studies.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 823
Author(s):  
Danko Ćorić ◽  
Mateja Šnajdar Musa ◽  
Matija Sakoman ◽  
Željko Alar

The development of cemented carbides nowadays is aimed at the application and sintering of ultrafine and nano-sized powders for the production of a variety of components where excellent mechanical properties and high wear resistance are required for use in high temperature and corrosive environment conditions. The most efficient way of increasing the tribological properties along with achieving high corrosion resistance is coating. Using surface processes (modification and/or coating), it is possible to form a surface layer/base material system with properties that can meet modern expectations with acceptable production costs. Three coating systems were developed on WC cemented carbides substrate with the addition of 10 wt.% Co using the plasma-assisted chemical vapor deposition (PACVD) method: single-layer TiN coating, harder multilayer gradient TiCN coating composed of TiN and TiCN layers, and the hardest multilayer TiBN coating composed of TiN and TiB2. Physical and mechanical properties of coated and uncoated samples were investigated by means of quantitative depth profile (QDP) analysis, nanoindentation, surface layer characterization (XRD analysis), and coating adhesion evaluation using the scratch test. The results confirm the possibility of obtaining nanostructured cemented carbides of homogeneous structure without structural defects such as eta phase or unbound carbon providing increase in hardness and fracture toughness. The lowest adhesion was detected for the single-layer TiN coating, while coatings with a complex architecture (TiCN, TiBN) showed improved adhesion.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 799
Author(s):  
Dingkun Xie ◽  
Lixiong Cai ◽  
Jie Wang

Adverse side-effects occurred in slurry foaming and thickening process when carbide slag was substituted for quicklime in HCS-AAC. Cement accelerators were introduced to modify the slurry foaming and coagulating process during pre-curing. Meanwhile, the affiliated effects on the physical-mechanical properties and hydration products were discussed to evaluate the applicability and influence of the cement accelerator. The hydration products were characterized by mineralogical (XRD) and thermal analysis (DSC-TG). The results indicated that substituting carbide slag for quicklime retarded slurry foaming and curing progress; meanwhile, the induced mechanical property declination had a negative effect on the generation of C–S–H (I) and tobermorite. Na2SO4 and Na2O·2.0SiO2 can effectively accelerate the slurry foaming rate, but the promoting effect on slurry thickening was inconspicuous. The compressive strength of HCS-AAC obviously declined with increasing cement coagulant content, which was mainly ascribed to the decrease in bulk density caused by the accelerating effect on the slurry foaming process. Dosing Na2SO4 under 0.4% has little effect on the generation of strength contributing to hydration products while the addition of Na2O·2.0SiO2 can accelerate the generation and crystallization of C–S–H, which contributed to the high activity gelatinous SiO2 generated from the reaction between Na2O·2.0SiO2 and Ca(OH)2.


2015 ◽  
Vol 830-831 ◽  
pp. 429-432 ◽  
Author(s):  
Udaya ◽  
Peter Fernandes

The paper illustrates Carbon nanotubes reinforced pure Al (CNT/Al) composites and fly ash reinforced pure Al (FA/Al) composites produced by ball-milling and sintering. Microstructures of the fabricated composite were examined and the mechanical properties of the composites were tested and analysed. It was indicated that the CNTs and fly ash were uniformly dispersed into the Al matrix as ball-milling time increased with increase in hardness.


Sign in / Sign up

Export Citation Format

Share Document