Mockup Investigation of Lightweight Timber Floor

2014 ◽  
Vol 899 ◽  
pp. 499-504
Author(s):  
Juraj Medveď ◽  
Bart Ingeleare ◽  
Lieven de Geetere

This paper dealt with measurement and analysis of different floor structures and their acoustic optimization towards the improvement of the impact sound insulation. Special attention goes to light weight timber frame constructions with taking in account the low frequency bands. The aim of the research is to create or design acoustic optimized lightweight floor constructions and mainly to find a good solution to achieve the best possible impact sound insulation for lightweight floors with the lowest possible thickness and low cost. Following contribution is first part of mentioned investigation and deal about test results on mockup lightweight construction.

2013 ◽  
Vol 649 ◽  
pp. 277-280
Author(s):  
Petra Berková ◽  
Pavel Berka

Through the use of a spectral analysis of the source of noise – person’s movement over the ceiling construction – it was found out that in this kind of noise distinctive low-frequency tone components occur (31,5 - 40 Hz) which is beyond the evaluation area of the impact sound insulation of the ceiling construction, s. [2], [3].


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6179
Author(s):  
Yunpeng Wang ◽  
Zonglin Jiang

The inertial vibration of the force measurement system (FMS) has a large influence on the force measuring result of aircraft, especially on some tests carried out in high-enthalpy impulse facilities, such as in a shock tunnel. When force tests are conducted in a shock tunnel, the low-frequency vibrations of the FMS and its motion cannot be addressed through digital filtering because of the inertial forces, which are caused by the impact flow during the starting process of the shock tunnel. Therefore, this paper focuses on the dynamic characteristics of the performance of the FMS. A new method—i.e., deep-learning-based single-vector dynamic self-calibration (DL-based SV-DSC) of an impulse FMS, is proposed to increase the accuracy of aerodynamic force measurements in a shock tunnel. A deep-learning technique is used to train the dynamic model of the FMS in this study. Convolutional neural networks with a simple structure are applied to describe the dynamic modeling so that the low-frequency vibration signals are eliminated from the test results of the shock tunnel. By validation of the force test results measured in a shock tunnel, the current trained model can realize intelligent processing of the balance signals of the FMS. Based on this new method of dynamic calibration, the reliability and accuracy of force data processing are well verified.


2019 ◽  
Vol 5 (1) ◽  
pp. 117
Author(s):  
Muyasser M. Jomaah ◽  
Muna Zead Baraa

The objective of using materials is to fully utilize the properties of these materials in order to obtain the best performance of the structure. The merits of material are based on many factors like, workability, structural strength, durability and low cost. Ferrocement is an excellent construction system. This paper studies the behavior of ferrocement circular slabs under impact load. The experimental program include testing four sime fixed supported ferrocement circular slabs of 800mm diameter and 50mm thickness. The Influence of the use of styropor voids was investigated in different ratios (24% and 48%) and a number of wire mesh layers four and six layers. Impact load test results revealed that increasing number of wire mesh from 4 to 6 led to an increase in the impact energy for first crack by (41.991% ,37.62%) respectively when using voids ratio by (24% and 48%) respectively and impact energy for full perforation by (21.7% and 9.94%) respectively when using voids ratio by (24% and 48%) respectively. Ferrocement circular slabs are used in construction fields such as roofs, tanks, manholes, etc.


2021 ◽  
Vol 263 (6) ◽  
pp. 778-786
Author(s):  
Maedot S. Andargie ◽  
Marianne Touchie ◽  
William O'Brien

Multi-unit residential building (MURB) occupants often express dissatisfaction with their suites' acoustic conditions despite existing building acoustic standards and regulations as well as growing research on noise control and building acoustics. Reasons for this include the lack of proper characterization of acoustic comfort in MURBs and lack of comprehensive and stringent regulations. To better understand factors that impact acoustic comfort and explore strategies to improve the acoustic performance of MURBs, investigations of acoustic conditions were carried out. This work presents the results of the investigations which include subjective and objective evaluations of acoustic conditions in two MURBs. Impact sound insulation measurements using both a tapping machine and a rubber ball as well as 24-hour indoor noise monitoring were carried out in unoccupied suites. An online survey was then used to collect subjective assessments of the noise conditions in the buildings and the effects on occupants' comfort post occupancy. Results of the data analysis suggest that occupants are more sensitive to low-frequency impact sounds than mid- and high-frequency impact noise.


2020 ◽  
Vol 13 (6) ◽  
pp. 067003
Author(s):  
Hao Zhang ◽  
Shengbing Chen ◽  
Zongzheng Liu ◽  
Yubao Song ◽  
Yong Xiao

Author(s):  
Robert A. Sayer ◽  
Jeffrey D. Engerer ◽  
Sudeshna Sen ◽  
N. S. Vidhyadhiraja ◽  
Timothy S. Fisher

Electrical noise is inherent in all conductors; the magnitude of this noise is proportional to device temperature in some frequency bands. Shot noise thermometry is a self-calibrating measurement technique that relates statistical fluctuations in DC current across a device to temperature. Historically, low frequency bands that contain 1/f noise have been filtered out in noise thermometry analysis. We report a noise analysis that accounts for 1/f noise in temperature measurements, thus reducing the required bandwidth of the measurement system. Numerical simulation is used to show the efficacy of this approach. Computer-generated noise signals containing Johnson, shot and 1/f noise are randomly generated. Data processing is used to determine device temperature and Fano factor. The impact of important factors such as data averaging, 1/f noise magnitude, bias range, ambient temperature and Fano factor on the accuracy and precision of fit values is investigated. This technique is then applied to experimental measurements on a vertical single-walled carbon nanotube array.


2013 ◽  
Vol 855 ◽  
pp. 245-251 ◽  
Author(s):  
Juraj Medveď ◽  
Bart Ingeleare ◽  
Lieven de Geetere

This paper is the second continuation of lightweight timber frame floor construction investigation with a respect to impact noise isolation. We will log on to previous article which dealt with mockup investigation of new LWTF floor conception. The main objectives of research is to design lightweight floor with good impact sound insulation performance to achieve low cost and reduce thickness of construction. In the following chapters well outline results of new floor model on lightweight timber frame construction implemented in laboratory conditions in Belgian Building Research Institute in Limelette, Belgium.


Author(s):  
Sedef Cakir 1 ◽  
Muhammed Aycicek 1 ◽  
Akin Akinci 1

Polymer materials are increasingly being used due to their superior properties such as light weight, low cost and corrosion resistance. The difficult destruction of highly advantageous polymers in the environment leads to environmental problems and has some disadvantages as they are obtained from exhausted sources such as oil. These problems brought new quests and biopolymers derived from renewable sources came to the forefront. In this study, mechanical and physical test results applied to PLA, which is biopolymer and their use as matrix are investigated. Mechanical tests show that PLA, which has a tensile strength of 46.88 MPa, an impact strength of 9.27 kJ/m2 and a hardness of 79.6 Shore D, can be used as a substitute for polymers derived from petroleum-based sources.


2021 ◽  
Vol 100 (5) ◽  
pp. 436-443
Author(s):  
Yury P. Paltsev ◽  
Larisa V. Pokhodzey ◽  
Yury V. Kurilenko ◽  
Elena A. Rudneva

Introduction. Until now, in the Russian Federation, unlike Western countries, hygienic regulations have not been developed for magnetic fields (MF) of low-frequency ranges. The aim of the study is a scientific substantiation of the threshold limit values (TLV) of magnetic fields in the range of 3 Hz - 30 kHz at workplaces. Materials and methods. A comparative analysis of domestic and foreign hygienic normative-methodical documentation regulating the TLV of magnetic fields of low-frequency ranges at workplaces is carried out. When substantiating TLV in the frequency range of 3 Hz - 30 kHz, the method of calculating the corrected value of the RMS MF strength in decadal frequency bands is used, taking into account its target values for different exposure times. Results. MF sources in the frequency range 3 Hz - 30 kHz were shown to be widely used in various areas of activity. The analysis of current domestic and foreign documents regulating the impact of MF in low-frequency bands showed the possibility of harmonizing hygienic regulations. The TLV MP in decadal frequency bands and the criteria for their hygienic assessment are scientifically substantiated. Conclusion. The studies made it possible for the first time in the Russian Federation to develop MF hygienic standards in the frequency range of 3Hz - 30 kHz at workplaces, the introduction of which into the practice of sanitary and epidemiological supervision will ensure adequate control over the electromagnetic environment and preservation of workers’ health.


Sign in / Sign up

Export Citation Format

Share Document