Selected Non-Destructive Methods Suitable for Evaluation of Roofing Slate

2014 ◽  
Vol 923 ◽  
pp. 63-70 ◽  
Author(s):  
Martin Vavro ◽  
Kamil Souček ◽  
Tomáš Daněk ◽  
Lubomír Staš

Roofing slate is a traditional natural material for roofing and other construction applications in various types of buildings. The paper deals with both traditional methods of mineralogical-petrographic analysis as well as completely new methods (X-ray CT) rendering fast and reliable determination of qualitative parameters and potential slate durability in building constructions. A mutual combination of the methods represents a rapid, effective and modern alternative to lengthy laboratory tests to determine physical-mechanical properties of newly used roofing, especially in historical buildings.

1983 ◽  
Vol 27 ◽  
Author(s):  
L. Salamanca-Riba ◽  
B.S. Elman ◽  
M.S. Dresselhaus ◽  
T. Venkatesan

ABSTRACTRutherford backscattering spectrometry (RBS) is used to characterize the stoichiometry of graphite intercalation compounds (GIC). Specific application is made to several stages of different donor and acceptor compounds and to commensurate and incommensurate intercalants. A deviation from the theoretical stoichiometry is measured for most of the compounds using this non-destructive method. Within experimental error, the RBS results agree with those obtained from analysis of the (00ℓ) x-ray diffractograms and weight uptake measurements on the same samples.


2004 ◽  
Vol 443-444 ◽  
pp. 31-34
Author(s):  
Giovanni Berti ◽  
Rob Delhez ◽  
S. Norval ◽  
B. Peplinski ◽  
E. Tolle ◽  
...  

This paper outlines the standardisation process for the XRPD method that is currently being considered by a Working Group (WG10) of Technical Committee 138 "Non-destructive Testing" of the European Committee for Standardisation CEN. Several Standard Documents are on the verge of being released. These documents concern the general principles of (X-ray) diffraction, its terminology, and the basic procedures applied. Another document concerns the instruments used and it offers procedures to characterise and control the performance of an X-ray diffractometer properly. It is intended to issue Standard Documents on specific methods, e.g. determination of residual stresses. In fact work is in progress on this subject. The Standard Documents can be used by industry, government organisations, and research centres with activities related to safety, health and the environment, as well as for educational purposes.


Catalysts ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1089
Author(s):  
Toru Wada ◽  
Ashutosh Thakur ◽  
Patchanee Chammingkwan ◽  
Minoru Terano ◽  
Toshiaki Taniike ◽  
...  

A combination of synchrotron X-ray total scattering and molecular simulation is a powerful approach for reliable determination of the structure of δ-MgCl2 as an indispensable component of heterogeneous Ziegler–Natta catalysts. Here, the same approach is applied to mechanically activated MgCl2. Four types of mechanically activated MgCl2 samples are prepared using ball-milling in the absence and presence of different donors. The development of structural disorder along the grinding time is compared. It was found that the presence of donors accelerates the formation of δ-MgCl2 in an early stage of grinding, while elongated grinding eventually results in δ-MgCl2 with similar extents of structural disorder in the absence and presence of different donors. The FT-IR investigation consistently verified the morphological similarity between the firmly ground samples. Thus, the structure of δ-MgCl2 is likely governed by mechanical energy when sufficiently ground.


1988 ◽  
Vol 142 ◽  
Author(s):  
John F. Porter ◽  
Dan O. Morehouse ◽  
Mike Brauss ◽  
Robert R. Hosbons ◽  
John H. Root ◽  
...  

AbstractStudies have been ongoing at Defence Research Establishment Atlantic on the evaluation of non-destructive techniques for residual stress determination in structures. These techniques have included neutron diffraction, x-ray diffraction and blind-hole drilling. In conjunction with these studies, the applicability of these procedures to aid in metallurgical and failure analysis investigations has been explored. The x-ray diffraction technique was applied to investigate the failure mechanism in several bent turbo blower rotor shafts. All examinations had to be non-destructive in nature as the shafts were considered repairable. It was determined that residual stress profiles existed in the distorted shafts which strongly indicated the presence of martensitic microstuctures. These microstructures are considered unacceptable for these shafts due to the potential for cracking or in-service residual stress relaxation which could lead to future shaft distortion.


2020 ◽  
Vol 54 (27) ◽  
pp. 4325-4337 ◽  
Author(s):  
Janez Rus ◽  
Alex Gustschin ◽  
Hubert Mooshofer ◽  
Jan-Carl Grager ◽  
Klaas Bente ◽  
...  

In the rapidly expanding composite industry, novel inspection methods have been developed in recent years. Particularly promising for air-coupled testing are cellular polypropylene transducers which offer better impedance matching to air than piezoelectric transducers. Furthermore, broadband transmitters (laser-induced ultrasound and thermoacoustic emitters) and receivers (optical microphones) have opened a completely new chapter for advanced contact-free ultrasound inspection. X-ray dark-field radiography offers a different approach to detect porosity and microcracks, employing small angle X-ray scattering. These innovative ultrasonic and radiographic alternatives were evaluated in comparison with well-established inspection techniques. We applied thirteen different non-destructive methods to inspect the same specimen (a carbon fiber-reinforced polymer laminate with induced impact damage): air-coupled ultrasound testing (using piezoelectric transducers, broadband optical microphones, cellular polypropylene transducers, and a thermoacoustic emitter), laser-induced ultrasound testing, ultrasonic immersion testing, phased array ultrasonic testing, optically excited lock-in thermography, and X-ray radiography (projectional absorption and dark-field, tomosynthesis, and micro-computed tomography). The inspection methods were qualitatively characterized by comparing the scan results. The conclusions are advantageous for a decision on the optimal method for certain testing constraints.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 775 ◽  
Author(s):  
Sebastián Feliu

From a technological point of view, measurement of the corrosion rate of magnesium (Mg) and its alloys is critical for lifetime predictions of Mg-based structures and for comparative assessments of their corrosion protection ability. Whilst weight loss, hydrogen evolution, and polarization curves methods are frequently used for measuring the corrosion rate, the determination of values by electrochemical impedance spectroscopy (EIS) is relatively scarce and has only been realized recently. This technique seems to be the most suitable for monitoring corrosion rate values due to its “non-destructive” character, its reproducibility, and its reliable determination of small corrosion rates, much lower than those measured by other techniques. This review aims to picture the state-of-the-art technique of using EIS for measuring the corrosion rate of Mg. This paper starts by introducing some fundamental aspects of the most widely used methods for monitoring the corrosion rate of Mg/Mg alloy and continues by briefly explaining some of the fundamental concepts surrounding EIS, which are essential for the user to be able to understand how to interpret the EIS spectra. Lastly, these concepts are applied, and different approaches that have been proposed to obtain quantitative values of corrosion rate since the 1990s are discussed.


2020 ◽  
Vol 62 (3) ◽  
pp. 160-162
Author(s):  
J Twydle

Previously, scientific examination of works of art was almost exclusively carried out in a specialist laboratory, major gallery or institution. Moving the artwork nearly always involved associated risks and transportation and insurance costs. Founded in 2009, The True Image Solution (TIS) had a vision to bring non-destructive technology to the artwork and to extend the possible range of evaluation by applying other imaging techniques, including ultrasound, flash thermography, X-ray spectroscopy and microwave imaging. In conjunction with English Heritage, these techniques were applied to a wide variety of objects. The results demonstrated that all of these techniques could be successfully carried out in situ and the risk of transportation damage, as well as associated transport and insurance costs, could be eliminated.


Sign in / Sign up

Export Citation Format

Share Document