Numerical Simulation of Squeezed Branch and Plate Pile Subjected to Vertical and Lateral Loads

2014 ◽  
Vol 926-930 ◽  
pp. 597-600
Author(s):  
Xiao Juan Gao ◽  
Yue Hui Li

Based on the theoretical analysis results, the bearing behavior of squeezed and branch pile under vertical load and lateral load was analyzed in this paper. The mean works include the influence of vertical load on the pile lateral bearing capacity and influence of the lateral load on the vertical load bearing capacity. The factors influence the bearing capacity of pile such as elastic modulus of soil around and under pile bottom, pile length, plate position are also analyzed.

2011 ◽  
Vol 255-260 ◽  
pp. 3110-3113
Author(s):  
Xiao Juan Gao ◽  
Yan Sun

Considering the initial stress field and concrete damage, no-linearity caused by crack of concrete, non-linear of reinforcement, elastic-plastic of soil around pile, couple interaction between concrete and steel, non-linearity contact of interface between pile and soil, the lateral load bearing capacity of squeezed branch and plate pile under vertical and lateral load is studied with infinite element and finite element couple method. The results indicate that the vertical load decreases the lateral displacement of pile top and increase the pile lateral load bearing capacity at the same time.


2014 ◽  
Vol 1065-1069 ◽  
pp. 943-948
Author(s):  
Zhi Meng Zhao ◽  
Jin Yi Chai ◽  
Cai Xia Fan

The effects of pile diameter, the property of pile end bearing stratum, the material parameters of pile shaft and the changes of pile length on the bearing performance of extra-long and large-diameter single pile were examined with the finite element software ABAQUS to make the numerical simulation analysis, by establishing the overall axial symmetry model, which was based on the data of static load test of single pile at the Yellow River Bridge site. The results show that the ultimate bearing capacity of single pile, the stiffness and the end resistance ratio would increase gradually, whereas the compression settlement ratio decreases slowly; the pile end grouting can significantly increase the ultimate loads, and therefore, improve the bearing performance of piles, but it has little effect on the stiffness of pile when loading was smaller; the elastic modulus of pile shaft has no effect on the ultimate bearing capacity of friction piles, little on the end resistance ratio, while the pile compression settlement ratio would gradually decrease and the stiffness would increased with the increase of the elastic modulus of pile shaft, and this increase of stiffness would slow down with the increase of elastic modulus of pile shaft; it is unreasonable to improve the ultimate bearing capacity of extra-long single pile only by means of increasing the pile length.


2020 ◽  
Vol 23 (11) ◽  
pp. 2276-2291
Author(s):  
Rui Pang ◽  
Yibo Zhang ◽  
Longji Dang ◽  
Lanbo Zhang ◽  
Shuting Liang

This article proposes a new type of discrete connected precast reinforced concrete diaphragm floor system that consists of precast flat slabs and slab joint connectors. An experimental investigation of discrete connected new-type precast reinforced concrete diaphragm under a vertical distributed static load was conducted, and the effect of slab joint connectors on the load-bearing capacity was evaluated. Then, a finite element analysis of discrete connected new-type precast reinforced concrete diaphragm, precast reinforced concrete floors without slab connectors, and cast-in-situ reinforced concrete floor were performed to understand their working mechanism and determine the differences in load-bearing behavior. The results indicate that the load-bearing capacity and stiffness of discrete connected new-type precast reinforced concrete diaphragm increase considerably as the hairpin and cover plate hybrid slab joint connectors can efficiently connect adjacent precast slabs and enable them to work together under a vertical load by transmitting the shear and moment forces in the orthogonal slab laying direction. The deflection of discrete connected new-type precast reinforced concrete diaphragm in orthogonal slab laying direction is mainly caused by the opening deformation of the slab joint and the rotational deformation of the precast slabs. This flexural deformation feature can provide reference for establishing the bending stiffness analytical model of discrete connected new-type precast reinforced concrete diaphragm in orthogonal slab laying direction, which is vitally important for foundation of the vertical bearing capacity and deformation calculation method. The deflection and crack distribution patterns infer that the discrete connected new-type precast reinforced concrete diaphragm processes the deformation characteristic of two-way slab floor, which can provide a basis for the theoretical analysis of discrete connected new-type precast reinforced concrete diaphragm.


2018 ◽  
Vol 2018 ◽  
pp. 1-17 ◽  
Author(s):  
Tianzhong Ma ◽  
Yanpeng Zhu ◽  
Xiaohui Yang ◽  
Yongqiang Ling

It is very necessary to research the bearing characteristics of composite pile group foundations with long and short piles under lateral load in loess areas, because these foundations are used widely. But few people researched this problem in loess areas up to now worldwide. In this paper, firstly, an indoor test model of a composite pile foundation with long and short piles is designed and then employed to explore the vertical load bearing characteristics and load transfer mechanisms of a single pile, a four-pile group, and a nine-pile group under different lateral loads. Secondly, ANSYS software is employed to analyze the load-bearing characteristics of the test model, and for comparison with the experimental results. The results demonstrate the following. (1) The lateral force versus pile head displacement curves of the pile foundation exhibit an obvious steep drop in section, which is a typical feature of piercing damage. A horizontal displacement limit of the pile foundation is 10 mm and 6mm for the ones sensitive to horizontal displacement. (2) The axial force along a pile and frictional resistance do not coincide, due to significant variations and discontinuities in the collapsibility of loess; a pile body exhibits multiple neutral points. Therefore, composite pile groups including both long and short piles could potentially maximize the bearing capacity and reduce pile settlement. (3) The distribution of stress and strain along the pile length is mainly concentrated from the pile head to a depth of about 1/3 of the pile length. If the lateral load is too large, short piles undergo rotation about their longitudinal axis and long piles undergo flexural deformation. Therefore, the lateral bearing capacity mainly relies on the strength of the soil at the interface with the pile or the horizontal displacement of the pile head.


2011 ◽  
Vol 374-377 ◽  
pp. 1947-1952 ◽  
Author(s):  
Zhao Yun Xiao ◽  
Guo Xun Zhang ◽  
Wei Xu ◽  
Zhong Ming Xue

It is a complicated progress of interaction between pile and soil when pile is under both vertical load and horizontal load. This paper analyzes the variation of stress, strain, deformation and deflection of the pile body by finite element numerical simulation of single bored concrete pile under vertical load together with horizontal load. Based on the existing research results, conclusions could be that the vertical load can increase horizontal bearing capacity of the pile in sandy soils, but horizontal bearing capacity of the pile in clayey soils is more complicated. Hope that the simulation can provide some references for the design of pile foundation.


1986 ◽  
Vol 15 (3) ◽  
pp. 149-151 ◽  
Author(s):  
N C Jensen ◽  
I Hvid

The influence of some simple design variations on the compressive load bearing capacity of tibial and talar prosthetic components in total ankle joint replacement were investigated in an attempt to suggest improvements to current prosthetic designs. Eighteen paired ankle joint preparations were fitted with three types of tibial components and two types of talar components. The tibial component with an intramedullary peg tolerated significantly higher loads before mechanical failure than the two other designs that were equal in load bearing capacity. The mean value of ultimate force was 40 per cent higher and the mean value of yield force was 15 per cent higher. However, for the coefficient of stiffness there was a significant fall of 18 per cent in the mean value. The talar components were equal in load bearing capacity and stiffness.


2014 ◽  
Vol 665 ◽  
pp. 196-202
Author(s):  
Yi Qing Guo ◽  
Ping Zhou Cao

In order to study the performance of lightweight energy-saving composite floor, the finite element models of composite floor were established, which was based on the composite floor specimens test research. The finite element models were verified rationally and correctly in the paper, through compared with the composite floor test results. The finite element model can be used to analyze the load-bearing capacity of composite floor. Various influencing factors of composite floor with simply supported end were analyzed, such as the span of self-tapping screw, the diameter of self-tapping screw, the strength of thin panel and the elastic modulus of thin panel, etc. The results show that the load-bearing capacity of composite floor increases with the increase of the number of self-tapping screw, the diameter of self-tapping screw, the strength of thin panel and the elastic modulus of thin panel, etc. The load-bearing capacity calculate formula of composite floor was proposed.


2011 ◽  
Vol 243-249 ◽  
pp. 2451-2455
Author(s):  
Song Tao Tang ◽  
Li Hong Chen

DX pile is a newly developed variable cross-section pile. Compared to conventional straight pile, it has distinct advantages on bearing capacity and settlement control. However, the bearing mechanism and characteristics of settlement, especially on group DX piles, are not clear. This paper illustrated and analyzed the bearing capacity and settlement characteristics of single DX pile and group DX piles according to the test results of in-situ model test. Special attention was paid on single and group DX pile comparison under same circumstances, at the mean while, compared the single DX pile and conventional pile with the same pile length and diameter, and with the same bearing capacity. The conclusions from the test results provided theoretical references for the design of the DX piles in engineering practices.


2014 ◽  
Vol 51 (8) ◽  
pp. 934-949 ◽  
Author(s):  
Dengfeng Fu ◽  
Britta Bienen ◽  
Christophe Gaudin ◽  
Mark Cassidy

Skirted mudmats are commonly used to support offshore infrastructure. However, these may not be able to provide sufficient capacity to notably withstand the lateral loads applied by jumpers and connectors. The concept of hybrid foundation system was therefore proposed to enhance the capacity in a targeted fashion, through addition of internal suction caisson compartments. This paper presents a numerical investigation into the undrained bearing capacity of a rectangular-shaped hybrid foundation with two caisson units. Uniaxial capacities under vertical, horizontal, and moment loading are reported, but the focus lies on the horizontal–moment planes due to the anticipated low vertical load on the foundation. Detailed discussion highlights the contribution of the internal caisson compartments to the significant increases in horizontal capacity compared to a simple rectangular skirted mat through changes in the failure mechanism. This results not only in changes in size, but also in shape, of the capacity envelope. The study was extended to more general horizontal–moment loading conditions, where the shape of the capacity envelope was found to remain approximately constant. This applies to the hybrid foundation and the rectangular skirted mat in the homogeneous soil considered here. An expression is proposed that provides a slightly conservative approximation of the capacity envelope under combined horizontal and moment loading from any direction.


2019 ◽  
Vol 9 (6) ◽  
pp. 1264 ◽  
Author(s):  
Jia Suizi ◽  
Cao Wanlin ◽  
Liu Zibin ◽  
Ding Wei ◽  
Su Yingnan

A building structure comprising a prefabricated lightweight concrete-filled steel tubular (CFST) framework composite slab structure is proposed. Five full-scale specimens (i.e., one empty framework and four-walled frameworks) were tested under reversed cyclic loading to study their earthquake-resistance performance. Of the four wall specimens, three were walled using composite slabs, one had no openings, one had a window opening, and one had a door opening. One was walled with a concealed steel-truss slab. A comparative study on the strength, stiffness, ductility, hysteresis characteristics, and dissipated energy of the specimens was performed. The working mechanism of the framework and slab was then analyzed. The results show that, if reasonably assembled and connected, the framework and slab work in a well-coordinated manner. The walled framework had greater lateral load-bearing capacity, better energy-dissipation, greater stiffness reduction, and better deformability than an empty framework. The area and type of slab opening had a significant impact on structural performance because a door or window opening contributed to a smaller lateral load-bearing capacity and initial secant stiffness of the structure. However, this had no clear impact on the accumulative dissipated energy of the structure.


Sign in / Sign up

Export Citation Format

Share Document