Effect of Grinding Aids on the Particles Characteristics of Cement and Analysis of Action Mechanism

2014 ◽  
Vol 936 ◽  
pp. 1404-1408
Author(s):  
Ji Hui Zhao ◽  
Dong Min Wang ◽  
Xue Guang Wang ◽  
Shu Cong Liao ◽  
Hui Lin

Effects of triethanolamine grinding aids on the angle of repose, fineness, particle morphology and particle size distribution of cement are studied, and the action mechanism of grinding aids is discussed by surface tension and Zeta potential. The results show that the powder fluidity and particle circularity of cement are improved and the particle size and grinding time of cement are effectively reduced by grinding aids. And Grinding aids improve the particles content in the range of 3-32μm particle size by 6.63% and promote destruction of the chemical bonds and lattice distortion of cement mineral during the grinding process. The dispersion grinding mechanism of grinding aids is that they can reduce the surface free energy of powder to prevent fine particles from closing each other and shield or neutralize the particles surface partial charge to prevent facture surface from healing and promoting the cracks to extend easily.

2017 ◽  
Vol 33 (6) ◽  
pp. 927-932
Author(s):  
Julie R Kalivoda ◽  
Cassandra K Jones ◽  
Charles R Stark

Abstract. Particle size reduction is an important component of feed manufacturing that impacts pellet quality, feed flowability, and animal performance. However, reducing particle size too fine often results in reduced flowability of the ground corn and finished feed, which creates potential handling and storage concerns at the feed mill and farm. The objective of this experiment was to determine how fractionation affected flowability of ground corn. Whole corn was received from a single source and ground to achieve 3 target particle sizes, 400, 500, and 600 µm with actual results of 469, 560, and 614 µm. Each target particle size was fractionated into three segments: fine (< 282 µm), medium (> 282 µm and < 630 µm), and coarse (> 630 µm) particles using a vibratory separator (model LS18SP3, SWECO, Florence, Ky.). Within particle size treatment, the percentage of sample obtained for each fraction was: 400 µm: 4.9%, 34.2%, and 60.9% for fine, medium, and coarse, respectively; 500 µm: 1.9%, 31.3%, and 66.9% for fine, medium, and coarse, respectively; and 600 µm: 1.0%, 24.4%, and 74.7% for fine, medium, and coarse, respectively. When the fractions were separated, their particle sizes were: 400 µm: 94, 269, and 744 µm for fine, medium, and coarse, respectively; 500 µm: 96, 253, and 815 µm for fine, medium, and coarse, respectively; and 600 µm: 99, 220, and 898 µm for fine, medium, and coarse, respectively. Fractionated samples were analyzed for multiple flowability characteristics, including: angle of repose, critical orifice diameter, composite flow index (CFI), bulk density, and compressibility. Treatments were arranged in a nested model with three replicates per treatment. Data were analyzed using the GLIMMIX procedure of SAS. When fraction was nested within particle size for each treatment, the fine fraction (< 282 µm) of the 400 µm corn had the poorest CFI (P < 0.05). Whereas the coarse fraction (> 630 µm) of the 600 µm corn had the best CFI. The nutrient content of the fractions was greatest in the medium fraction (> 282 µm and < 630 µm) for crude protein, fat, and acid detergent fiber (ADF). In conclusion, reducing particle size resulted in the ground corn having poorer flowability characteristics, caused predominantly by particles that passed through a 282 µm screen. Based on this data, producers may potentially grind corn to a lower particle size while maintaining flowability if fine particles (< 282 µm) are removed. Keywords: Corn, Flowability, Particle size analysis


2014 ◽  
Vol 881-883 ◽  
pp. 1487-1491 ◽  
Author(s):  
Jing Jing Zhu ◽  
Hua Zhi Gu ◽  
Tian Xing Peng ◽  
Bao Hua Sun

Silca and its composite powders added different amount of microsilica were ground in a planetary ball mill (QM-3SP4) at various grinding period with addition of a certain number of grinding aid. The effects of mechano-chemical on particle size, crystal size and lattice deformation in grinding process were analyzed. The phase compositions and size compositions of the treated powders were investigated by X-ray Diffraction (XRD) and Laser Particle Size Analyzers. With the increase of grinding time, the particle size decrease, the specific surface area increase, and the more amount of microsilica added, the smaller particle size the powders had after grinding. The XRD results showed that the diffraction peak intensity of powders weaken and gradually widen. The surface of the particle happened to amorphization, and occurred grain refinement and lattice distortion. Comparing with other treated powders, the change of the powders with the microsilica addition of 5% was larger. Even though the grinding time reached to 30h, the crystal transformation of SiO2has not been detected.


2021 ◽  
Vol 1167 ◽  
pp. 67-75
Author(s):  
Jin Hyok Ri ◽  
Yong Ho Kim ◽  
Yong Su Hwang ◽  
Song Gun Kang ◽  
Ju Hyon Yu

Grinding aids to increase grinding efficiency in cement production are materials that can produce large amounts of high-quality cement in a short time by reducing surface energy by preventing particle agglomeration and improving fluidity. In the paper, a grinding aid using glycerol-waste antifreeze(GAP) is prepared and its effect on the grinding properties of clinker is investigated in contrast to that without the grinding aid. The results are as follows: The angle of repose of the cement powder added with GAP decreases as the grinding time increases (decreases by 3.8° when the grinding time is 60 minutes), indicating that it increases the flowability of the powder. On the contrary, the residual amount of 45µm sieve is also significantly reduced (4.6% decrease) and the specific surface area increases (30.5m2/kg), which results in an increase in the grinding efficiency. In the size range of 3 to 32µm, it increases the particle content, makes the particle size distribution uniform, the 7d and 28d activity index of the powder is improved by 5% and 6%, respectively, and increases the compressive strength of the cement. In addition, it is confirmed that the performance of the TEA grinding aid and the grinding aid are similar, and are very effective in terms of economy.


TAPPI Journal ◽  
2015 ◽  
Vol 14 (9) ◽  
pp. 565-576 ◽  
Author(s):  
YUCHENG PENG ◽  
DOUGLAS J. GARDNER

Understanding the surface properties of cellulose materials is important for proper commercial applications. The effect of particle size, particle morphology, and hydroxyl number on the surface energy of three microcrystalline cellulose (MCC) preparations and one nanofibrillated cellulose (NFC) preparation were investigated using inverse gas chromatography at column temperatures ranging from 30ºC to 60ºC. The mean particle sizes for the three MCC samples and the NFC sample were 120.1, 62.3, 13.9, and 9.3 μm. The corresponding dispersion components of surface energy at 30°C were 55.7 ± 0.1, 59.7 ± 1.3, 71.7 ± 1.0, and 57.4 ± 0.3 mJ/m2. MCC samples are agglomerates of small individual cellulose particles. The different particle sizes and morphologies of the three MCC samples resulted in various hydroxyl numbers, which in turn affected their dispersion component of surface energy. Cellulose samples exhibiting a higher hydroxyl number have a higher dispersion component of surface energy. The dispersion component of surface energy of all the cellulose samples decreased linearly with increasing temperature. MCC samples with larger agglomerates had a lower temperature coefficient of dispersion component of surface energy.


2016 ◽  
Vol 12 (3) ◽  
pp. 4307-4321 ◽  
Author(s):  
Ahmed Hassan Ibrahim ◽  
Yehia Abbas

The physical properties of ferrites are verysensitive to microstructure, which in turn critically dependson the manufacturing process.Nanocrystalline Lithium Stannoferrite system Li0.5+0.5XFe2.5-1.5XSnXO4,X= (0, 0.2, 0.4, 0.6, 0.8 and 1.0) fine particles were successfully prepared by double sintering ceramic technique at pre-sintering temperature of 500oC for 3 h andthepre-sintered material was crushed and sintered finally in air at 1000oC.The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction (XRD) and the Rietveld method.The refinement results showed that the nanocrystalline ferrite has a two phases of ordered and disordered phases for polymorphous lithium Stannoferrite.The particle size of as obtained samples were found to be ~20 nm through TEM that increases up to ~ 85 nmand isdependent on the annealing temperature. TEM micrograph reveals that the grains of sample are spherical in shape. (TEM) analysis confirmed the X-ray results.The particle size of stannic substituted lithium ferrite fine particle obtained from the XRD using Scherrer equation.Magneticmeasurements obtained from lake shore’s vibrating sample magnetometer (VSM), saturation magnetization ofordered LiFe5O8 was found to be (57.829 emu/g) which was lower than disordered LiFe5O8(62.848 emu/g).Theinterplay between superexchange interactions of Fe3+ ions at A and B sublattices gives rise to ferrimagnetic ordering of magnetic moments,with a high Curie-Weiss temperature (TCW ~ 900 K).


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 278 ◽  
Author(s):  
Niloofar Ordou ◽  
Igor E. Agranovski

Particle size distribution in biomass smoke was observed for different burning phases, including flaming and smouldering, during the combustion of nine common Australian vegetation representatives. Smoke particles generated during the smouldering phase of combustions were found to be coarser as compared to flaming aerosols for all hard species. In contrast, for leafy species, this trend was inversed. In addition, the combustion process was investigated over the entire duration of burning by acquiring data with one second time resolution for all nine species. Particles were separately characterised in two categories: fine particles with dominating diffusion properties measurable with diffusion-based instruments (Dp < 200 nm), and coarse particles with dominating inertia (Dp > 200 nm). It was found that fine particles contribute to more than 90 percent of the total fresh smoke particles for all investigated species.


2015 ◽  
Vol 670 ◽  
pp. 49-54 ◽  
Author(s):  
Yuriy A. Zaharov ◽  
Valeriy M. Pugachev ◽  
Kseniya A. Datiy ◽  
Anna N. Popova ◽  
Anastasiya S. Valnyukova ◽  
...  

In the paper, the particle morphology is considered and the slices of phase diagrams of nanosystems agreeable to the synthesis conditions are constructed according to the data obtained earlier by authors, as well as new results of the study of nanostructured Fe-Co, Fe-Ni, Co-Ni, Fe-Co-Ni, Fe-Pt, Cu-Ni and Ni-Cd powders. It is found that all considered polymetallic systems have common nature of the particle size spatial organization, i.e., 7-20 nm nanocrystals (for different systems) form highly compact aggregates (40-100 nm) which put together into loose porous agglomerates (up to 200-250 nm) and then into unconsolidated micron size formation of cloud type. It is classified uncovered features of nanostructured polymetallic phase diagrams in comparison with phase diagrams of bulk systems. Magnetic properties of nanosystems are studied.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2303
Author(s):  
Congyu Zhong ◽  
Liwen Cao ◽  
Jishi Geng ◽  
Zhihao Jiang ◽  
Shuai Zhang

Because of its weak cementation and abundant pores and cracks, it is difficult to obtain suitable samples of tectonic coal to test its mechanical properties. Therefore, the research and development of coalbed methane drilling and mining technology are restricted. In this study, tectonic coal samples are remodeled with different particle sizes to test the mechanical parameters and loading resistivity. The research results show that the particle size and gradation of tectonic coal significantly impact its uniaxial compressive strength and elastic modulus and affect changes in resistivity. As the converted particle size increases, the uniaxial compressive strength and elastic modulus decrease first and then tend to remain unchanged. The strength of the single-particle gradation coal sample decreases from 0.867 to 0.433 MPa and the elastic modulus decreases from 59.28 to 41.63 MPa with increasing particle size. The change in resistivity of the coal sample increases with increasing particle size, and the degree of resistivity variation decreases during the coal sample failure stage. In composite-particle gradation, the proportion of fine particles in the tectonic coal sample increases from 33% to 80%. Its strength and elastic modulus increase from 0.996 to 1.31 MPa and 83.96 to 125.4 MPa, respectively, and the resistivity change degree decreases. The proportion of medium particles or coarse particles increases, and the sample strength, elastic modulus, and resistivity changes all decrease.


2010 ◽  
Vol 123-125 ◽  
pp. 611-614 ◽  
Author(s):  
Yu Ping Tong ◽  
Rui Zhu Zhang ◽  
Shun Bo Zhao ◽  
Chang Yong Li

Well-dispersed fluorite Er2Zr2O7 nanocrystals have been successfully prepared by a convenient salt-assistant combustion method. The effects of calcinations temperature and salt category on the characteristics of the products were investigated by XRD and TEM. The thermal treatment temperature has an important effect on crystal size and lattice distortion of the nanocrystals. The experiment showed that the introduction of salt in the combustion synthesis process resulted in the formation of well-dispersed Er2Zr2O7 nanocrystals. The average size was 30 nm and was in agreement with the XRD result, which indicated that the nanocrystals were uniform in particle size distribution. Moreover, the possible formation process in the salt-assisted combustion synthesis was also analyzed.


Sign in / Sign up

Export Citation Format

Share Document