Quantitative Analysis of Instability for Superplastic Tension

2014 ◽  
Vol 941-944 ◽  
pp. 1505-1508
Author(s):  
Zhi Ping Guan ◽  
Ming Wen Ren ◽  
Pin Kui Ma ◽  
Po Zhao

In conventional analysis of instability, a rough prediction of uniform deformation was obtained due to taking material parameters as constants. In this study, the constitutive equation with varying parameters for Zn-5%Al alloy at 340 °C is employed to predict the critical values of uniform strain in tension based on Considere criterion and Hart criterion, respectively. It should address the factor of strain rate in the characterization of the capability of uniform deformation on superplastic alloys, or for that matter, on any rate-dependent material. Comparison and analysis indicated that the results on Hart criterion have the better predictability of uniform deformation than Considere criterion. The Considere criterion is dependent on strain path, while Hart crtierion is merely dependent on the values of strain and strain rate in tension, and is independent on the strain path or the deformation condition or the deformation history. Therefore, the uniform strain vs. strain rate relation can be taken as a quantitative reference for designing a reasonable strain path during superplastic forming with increase of formability and reduction of forming time.

1982 ◽  
Vol 104 (1) ◽  
pp. 41-46
Author(s):  
T. C. Hsu ◽  
I. M. Bidhendi

A superplastic Zn-Al alloy in sheet form is formed into a bulge over a circular hole by pneumatic pressure. The geometry, the stress, the strain, and the strain-rate are determined at various points covering the whole specimen and at various stages of the forming process. The complicated shape, and its complicated changes, are represented by introducing an index for the local geometry, called “prolateness,” which is also related to the local stress ratio in a simple way. The biaxial stress is analyzed into a strain-proportional and a strain-rate-proportional component, which represent, respectively, the quasi-solid and the quasi-liquid behavior of the superplastic material.


1992 ◽  
Vol 59 (3) ◽  
pp. 485-490 ◽  
Author(s):  
P. Tugˇcu

The plane-strain tension test is analyzed numerically for a material with strain and strain-rate hardening characteristics. The effect of the prescribed rate of straining is investigated for an additive logarithmic description of the material strain-rate sensitivity. The dependency to the imposed strain rate so introduced is shown to have a significant effect on several features of the load-elongation curve such as the attainment of the load maximum, the onset of localization, and the overall engineering strain.


2019 ◽  
Vol 89 (18) ◽  
pp. 3825-3838
Author(s):  
Ahmad Abuobaid ◽  
Raja Ganesh ◽  
John W Gillespie

A dynamic loop test method for measuring strain rate-dependent fiber properties was developed. During dynamic loop testing, the fiber ends are accelerated at constant levels of 20.8, 50 and 343 m/s2. The test method is used to study Kevlar® KM2-600, which fails in axial compression due to kink band formation. The compressive failure strain and strain rate at the onset of kink band formation is calculated from the critical loop diameter ( D C), which is monitored throughout the test using a high-speed camera. The results showed that compressive failure strain increases with strain rates from quasi-static to a maximum strain rate of 116 s−1 by a factor of ∼3. Kink angles (φ) and kink band spacing ( D S) were 60 ° ± 2 ° and 16 ± 3 μm, respectively, over the strain rates tested. Rate-dependent mechanisms of compressive failure by kink band formation were discussed.


2001 ◽  
Author(s):  
Shi-Wei Ricky Lee ◽  
Lan Hong Dai

Abstract The present study is aimed at the experimental characterization of strain-rate dependent behaviour of solder materials under impulsive shear loading. In order to achieve this objective, a unique testing technique, namely, split Hopkinson torsion bar (SHTB) is employed. The solder material under investigation is 63Sn-37Pb. The experimental results indicate that the shear behavior of the solder joint is very sensitive to the strain rate and the dynamic shear strength of the solder joint is much higher than the static one.


2003 ◽  
Vol 2003.11 (0) ◽  
pp. 391-392
Author(s):  
Tsutomu TANAKA ◽  
Li Fu Chaing ◽  
Sung Wook Chung ◽  
Koichi MAKII ◽  
Atsumichi KUSHIBE ◽  
...  

2019 ◽  
Vol 39 (5-6) ◽  
pp. 165-174
Author(s):  
JF Rojas-Sanchez ◽  
T Schmack ◽  
B Boesl ◽  
R Bjekovic ◽  
F Walther

This research addresses the problem of accurately quantifying the strain rate effect of carbon fibre-reinforced plastics by proposing a method with a simple specimen manufacturing and experiment execution based on four-point bending tests. By easing the strain rate-dependent characterization of carbon fibre-reinforced plastics, less conservative designs can be achieved. The method proposed uses Euler–Bernoulli and Timoshenko’s beam theories to obtain the longitudinal compressive and tensile modulus, compressive strength, shear modulus, and shear yielding point. Transverse properties could not be obtained due to limitations of the fixture employed. A strain-dependent material characterization was done using the proposed method and compared to the characterization of the same material using traditional uniaxial tests. Most of the material properties obtained with different methods correlated within approximately 10%. More work needs to be done to determine how this discrepancy affects simulation results.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Kun-Lin Lee ◽  
Marta Baldassarri ◽  
Nikhil Gupta ◽  
Dinesh Pinisetty ◽  
Malvin N. Janal ◽  
...  

As a strain rate-dependent material, bone has a different mechanical response to various loads. Our aim was to evaluate the effect of water and different loading/unloading rates on the nanomechanical properties of canine femur cortical bone. Six cross-sections were cut from the diaphysis of six dog femurs and were nanoindented in their cortical area. Both dry and wet conditions were taken into account for three quasistatic trapezoid profiles with a maximum force of 2000 μN (holding time = 30 s) at loading/unloading rates of 10, 100, and 1000 μN/s, respectively. For each specimen,254±9(mean ± SD) indentations were performed under different loading conditions. Significant differences were found for the elastic modulus and hardness between wet and dry conditions (P<0.001). No influence of the loading/unloading rates was observed between groups except for the elastic modulus measured at 1000 μN/s rate under dry conditions (P<0.001) and for the hardness measured at a rate of 10 μN/s under wet conditions (P<0.001). Therefore, for a quasistatic test with peak load of 2000 μN held for 30 s, it is recommended to nanoindent under wet conditions at a loading/unloading rate of 100–1000 μN/s, so the reduced creep effect allows for a more accurate computation of mechanical properties.


2014 ◽  
Vol 7 (3) ◽  
pp. 514-519 ◽  
Author(s):  
N. Shivakumar ◽  
Anindya Deb ◽  
Clifford Chou ◽  
H. Chittappa

Sign in / Sign up

Export Citation Format

Share Document