scholarly journals Nanomechanical Characterization of Canine Femur Bone for Strain Rate Sensitivity in the Quasistatic Range under Dry versus Wet Conditions

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Kun-Lin Lee ◽  
Marta Baldassarri ◽  
Nikhil Gupta ◽  
Dinesh Pinisetty ◽  
Malvin N. Janal ◽  
...  

As a strain rate-dependent material, bone has a different mechanical response to various loads. Our aim was to evaluate the effect of water and different loading/unloading rates on the nanomechanical properties of canine femur cortical bone. Six cross-sections were cut from the diaphysis of six dog femurs and were nanoindented in their cortical area. Both dry and wet conditions were taken into account for three quasistatic trapezoid profiles with a maximum force of 2000 μN (holding time = 30 s) at loading/unloading rates of 10, 100, and 1000 μN/s, respectively. For each specimen,254±9(mean ± SD) indentations were performed under different loading conditions. Significant differences were found for the elastic modulus and hardness between wet and dry conditions (P<0.001). No influence of the loading/unloading rates was observed between groups except for the elastic modulus measured at 1000 μN/s rate under dry conditions (P<0.001) and for the hardness measured at a rate of 10 μN/s under wet conditions (P<0.001). Therefore, for a quasistatic test with peak load of 2000 μN held for 30 s, it is recommended to nanoindent under wet conditions at a loading/unloading rate of 100–1000 μN/s, so the reduced creep effect allows for a more accurate computation of mechanical properties.

1992 ◽  
Vol 59 (3) ◽  
pp. 485-490 ◽  
Author(s):  
P. Tugˇcu

The plane-strain tension test is analyzed numerically for a material with strain and strain-rate hardening characteristics. The effect of the prescribed rate of straining is investigated for an additive logarithmic description of the material strain-rate sensitivity. The dependency to the imposed strain rate so introduced is shown to have a significant effect on several features of the load-elongation curve such as the attainment of the load maximum, the onset of localization, and the overall engineering strain.


2019 ◽  
Vol 745 ◽  
pp. 279-290 ◽  
Author(s):  
Behnam Shakerifard ◽  
Jesus Galan Lopez ◽  
Mari Carmen Taboada Legaza ◽  
Patricia Verleysen ◽  
Leo A.I. Kestens

Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 344 ◽  
Author(s):  
Simon Sevsek ◽  
Christian Haase ◽  
Wolfgang Bleck

The strain-rate-dependent deformation behavior of an intercritically annealed X6MnAl12-3 medium-manganese steel was analyzed with respect to the mechanical properties, activation of deformation-induced martensitic phase transformation, and strain localization behavior. Intercritical annealing at 675 °C for 2 h led to an ultrafine-grained multi-phase microstructure with 45% of mostly equiaxed, recrystallized austenite and 55% ferrite or recovered, lamellar martensite. In-situ digital image correlation methods during tensile tests revealed strain localization behavior during the discontinuous elastic-plastic transition, which was due to the localization of strain in the softer austenite in the early stages of plastic deformation. The dependence of the macroscopic mechanical properties on the strain rate is due to the strain-rate sensitivity of the microscopic deformation behavior. On the one hand, the deformation-induced phase transformation of austenite to martensite showed a clear strain-rate dependency and was partially suppressed at very low and very high strain rates. On the other hand, the strain-rate-dependent relative strength of ferrite and martensite compared to austenite influenced the strain partitioning during plastic deformation, and subsequently, the work-hardening rate. As a result, the tested X6MnAl12-3 medium-manganese steel showed a negative strain-rate sensitivity at very low to medium strain rates and a positive strain-rate sensitivity at medium to high strain rates.


Author(s):  
Amil Derrouiche ◽  
Ameni Zaouali ◽  
Fahmi Zaïri ◽  
Jewan Ismail ◽  
Zhengwei Qu ◽  
...  

The aim of this article is to provide some insights on the osmo-inelastic response under stretching of annulus fibrosus of the intervertebral disc. Circumferentially oriented specimens of square cross section, extracted from different regions of bovine cervical discs (ventral-lateral and dorsal-lateral), are tested under different strain-rates and saline concentrations within normal range of strains. An accurate optical strain measuring technique, based upon digital image correlation, is used in order to determine the full-field displacements in the lamellae and fibers planes of the layered soft tissue. Annulus stress–stretch relationships are measured along with full-field transversal strains in the two planes. The mechanical response is found hysteretic, rate-dependent and osmolarity-dependent with a Poisson’s ratio higher than 0.5 in the fibers plane and negative (auxeticity) in the lamellae plane. While the stiffness presents a regional-dependency due to variations in collagen fibers content/orientation, the strain-rate sensitivity of the response is found independent on the region. A significant osmotic effect is found on both the auxetic response in the lamellae plane and the stiffness rate-sensitivity. These local experimental observations will result in more accurate chemo-mechanical modeling of the disc annulus and a clearer multi-scale understanding of the disc intervertebral function.


2013 ◽  
Vol 37 (3) ◽  
pp. 365-373
Author(s):  
Tao-Hsing Chen

The influence of titanium element, strain rate and tested temperatures on the mechanical properties and microstructural characteristics will be investigated in this paper. These cobalt-based superalloys are tested using material testing system (MTS) at strain rates of 10−3, 10−2 and 10−1 s−1 and at temperatures of 700, 500 and 25° C, respectively. It is found that the flow stress increases with increasing strain rate and Ti, but decreases with increasing temperature. Furthermore, the strain rate sensitivity increases with increasing strain rate, but decreases with increasing temperature. The microstructural observations confirm that the mechanical response of the cobalt superalloy specimens is directly related to the effects of the titanium contents, strain rate and temperature on the evolution of the microstructure. It can be observed that the strengthening effect in cobalt-based superalloys is a result primarily of dislocation multiplication. The dislocation density increases with increasing strain rate, but decreases with increasing temperature.


Author(s):  
W-S Lee ◽  
T-H Chen

Investigation of the impact behaviour of Hadfield steel has been carried out in a broad range of strain rates from 10−3 to 9 × 103s−1 by means of a servo-hydraulic machine and a compressive split Hopkinson bar. The effects of strain rate on the impact properties, substructure evolution and fracture resistance have been evaluated. The observed stress-strain response is influenced greatly by strain rate, resulting in obvious changes of work hardening rate, strain rate sensitivity and activation volume. This rate-dependent behaviour is in good agreement with model predictions using the Zerilli-Armstrong constitutive law. Dislocation tangle and deformation twin substructures are also found to develop as a function of strain rate. Increasing dislocation and twin densities enhance the work hardening rate and flow strength. Catastrophic failure at high rates results from the formation of localized shear bands. With increasing strain rate, there is an increase in brittle cleavage microfracture, resulting in ductility loss. Microcracking initiates at grain boundaries due to the presence of carbide precipitates.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Taylor S. Cohen ◽  
Andrew W. Smith ◽  
Panagiotis G. Massouros ◽  
Philip V. Bayly ◽  
Amy Q. Shen ◽  
...  

Understanding the brain’s response to multiple loadings requires knowledge of how straining changes the mechanical response of brain tissue. We studied the inelastic behavior of bovine white matter and found that when this tissue is stretched beyond a critical strain threshold, its reloading stiffness drops. An upper bound for this strain threshold was characterized, and was found to be strain rate dependent at low strain rates and strain rate independent at higher strain rates. Results suggest that permanent changes to tissue mechanics can occur at strains below those believed to cause physiological disruption or rupture of axons. Such behavior is characteristic of disentanglement in fibrous-networked solids, in which strain-induced mechanical changes may result from fiber realignment rather than fiber breakage.


2014 ◽  
Vol 941-944 ◽  
pp. 1505-1508
Author(s):  
Zhi Ping Guan ◽  
Ming Wen Ren ◽  
Pin Kui Ma ◽  
Po Zhao

In conventional analysis of instability, a rough prediction of uniform deformation was obtained due to taking material parameters as constants. In this study, the constitutive equation with varying parameters for Zn-5%Al alloy at 340 °C is employed to predict the critical values of uniform strain in tension based on Considere criterion and Hart criterion, respectively. It should address the factor of strain rate in the characterization of the capability of uniform deformation on superplastic alloys, or for that matter, on any rate-dependent material. Comparison and analysis indicated that the results on Hart criterion have the better predictability of uniform deformation than Considere criterion. The Considere criterion is dependent on strain path, while Hart crtierion is merely dependent on the values of strain and strain rate in tension, and is independent on the strain path or the deformation condition or the deformation history. Therefore, the uniform strain vs. strain rate relation can be taken as a quantitative reference for designing a reasonable strain path during superplastic forming with increase of formability and reduction of forming time.


2001 ◽  
Author(s):  
Shi-Wei Ricky Lee ◽  
Lan Hong Dai

Abstract The present study is aimed at the experimental characterization of strain-rate dependent behaviour of solder materials under impulsive shear loading. In order to achieve this objective, a unique testing technique, namely, split Hopkinson torsion bar (SHTB) is employed. The solder material under investigation is 63Sn-37Pb. The experimental results indicate that the shear behavior of the solder joint is very sensitive to the strain rate and the dynamic shear strength of the solder joint is much higher than the static one.


Sign in / Sign up

Export Citation Format

Share Document