Research on the Cornering Characteristics of Three-Axle Vehicle

2014 ◽  
Vol 945-949 ◽  
pp. 567-570
Author(s):  
Bo Xu ◽  
Sheng Min Cui ◽  
Xiang Yu Wu

A multi-axle dynamic steering technology was proposed to solve the steering stability and maneuverability problem of heavy vehicle. Two degrees of freedom linear steering-model and motion-equations of three-axle vehicle was established. Taking the zero sideslip angle as the control target and the proportional rear-front wheel angle as control method, we got the angular scale-factor equation and related matrix of the state space and transfer function. The MATLAB software was used to simulate the different steering modes stability steady-state and transient response. The results show that by using proportional control method the sideslip angle can be stabilized near zero and by using multi-axle dynamic steering technology the stability and maneuverability of the vehicle when steering can be improved effectively.

2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Kun Yang ◽  
Danxiu Dong ◽  
Chao Ma ◽  
Zhaoxian Tian ◽  
Yile Chang ◽  
...  

Tire longitudinal forces of electrics vehicle with four in-wheel-motors can be adjusted independently. This provides advantages for its stability control. In this paper, an electric vehicle with four in-wheel-motors is taken as the research object. Considering key factors such as vehicle velocity and road adhesion coefficient, the criterion of vehicle stability is studied, based on phase plane of sideslip angle and sideslip-angle rate. To solve the problem that the sideslip angle of vehicles is difficult to measure, an algorithm for estimating the sideslip angle based on extended Kalman filter is designed. The control method for vehicle yaw moment based on sliding-mode control and the distribution method for wheel driving/braking torque are proposed. The distribution method takes the minimum sum of the square for wheel load rate as the optimization objective. Based on Matlab/Simulink and Carsim, a cosimulation model for the stability control of electric vehicles with four in-wheel-motors is built. The accuracy of the proposed stability criterion, the algorithm for estimating the sideslip angle and the wheel torque control method are verified. The relevant research can provide some reference for the development of the stability control for electric vehicles with four in-wheel-motors.


2013 ◽  
Vol 409-410 ◽  
pp. 1441-1444
Author(s):  
Jun Qi Yang ◽  
Lan Tang ◽  
Zhuo Qing Li

With the building and analysis of 2 DOFs linear model of vehicle ,the keeping at zero of body sideslip angle is regarded as the control target of four-wheel-steering(4WS) to conduct the simulation and analysis of its handling stability in Simulink. There are many methods and parameters to evaluate handling stability. In this paper,one kind of double-move-line performance is used to do the evaluation.In order to make the result more intuitive,virtual reality toolbox in MATLAB are used to link the data in Simulink and the virtual world built by V-Realm Builder,which display the transient response of 4WS in high speed when it is in the emergency of obstacle avoidance .For the purpose of evaluation of handling stability,a front-wheel-steering(2WS) model is built to present a comparison to 4WS.


1990 ◽  
Vol 112 (4) ◽  
pp. 653-660 ◽  
Author(s):  
H. Kazerooni ◽  
K. G. Bouklas ◽  
J. Guo

This work presents a control methodology for compliant motion in redundant robot manipulators. This control approach takes advantage of the redundancy in the robot’s degrees of freedom: while a maximum six degrees of freedom of the robot control the robot’s endpoint position, the remaining degrees of freedom impose an appropriate force on the environment. To verify the applicability of this control method, an active end-effector is mounted on an industrial robot to generate redundancy in the degrees of freedom. A set of experiments are described to demonstrate the use of this control method in constrained maneuvers. The stability of the robot and the environment is analyzed.


2013 ◽  
Vol 278-280 ◽  
pp. 1510-1515 ◽  
Author(s):  
Jie Tian ◽  
Ya Qin Wang ◽  
Ning Chen

A new vehicle stability control method integrated direct yaw moment control (DYC) with active front wheel steering (AFS) was proposed. On the basis of the vehicle nonlinear model, vehicle stable domain was determined by the phase plane of sideslip angle and sideslip angular velocity. When the vehicle was outside the stable domain, DYC was firstly used to produce direct yaw moment, which can make vehicle inside the stable domain. Then AFS sliding mode control was used to make the sideslip angle and yaw rate track the reference vehicle model. The simulation results show that the integrated controller improves vehicle stability more effectively than using the AFS controller alone.


2011 ◽  
Vol 97-98 ◽  
pp. 735-740
Author(s):  
Ming Hui Zhao ◽  
Lian Dong Wang ◽  
Lei Ma ◽  
Hui Hou

Based on two freedom degrees of vehicle model, control method which takes yaw rate and sideslip angle as system state, and front wheel corner and direct yaw moment as control input is put forward. Considering uncertainty of velocity and direct yaw moment, feedforward-feedback controllers are designed. Four wheel drive force are allocated by using feedforward compensation and yaw moment which is formed by driving force difference value. It makes yaw rate and sideslip well of tracking the desirable model when the vehicle drive steering. Finally, vehicle handling stability is studied on conditions of step input and sine input by simulation.


2021 ◽  
Vol 12 (3) ◽  
pp. 153
Author(s):  
Chuanwei Zhang ◽  
Bo Chang ◽  
Jianlong Wang ◽  
Shuaitian Li ◽  
Rongbo Zhang ◽  
...  

In order to improve the stability of vehicle steering on low-adhesion road surfaces, this paper designed a hybrid robust control strategy, H2/H∞, for active front-wheel steering (AFS) based on robust control theory. Firstly, we analyzed the influence of the sidewall stiffness and road adhesion coefficient of the tires on vehicle stability, through which we can study the wheel deflection characteristics of low-adhesion roads. Secondly, the reference yaw velocity of the vehicle was calculated using the three-degrees-of-freedom model as the reference model, through which, taking the norm H∞ as the objective function and the norm H2 as the limit to control the output, the hybrid robust control strategy H2/H∞ of the AFS system on a low-adhesion road surface was developed. Finally, the simulation experiment was carried out by the Simulink/CarSim co-simulation platform and a hardware-in-the-loop (HIL) experiment. In this paper, the results show that the AFS control strategy can improve the vehicle handling stability on low-adhesion road surfaces, and the controller has good path tracking performance and robustness.


2021 ◽  
pp. 107754632098779
Author(s):  
Heng Wei ◽  
Jian-Wei Lu ◽  
Sheng-Yong Ye ◽  
Hang-Yu Lu

The vertical load of the tire has a significant influence on the lateral force, so the influence of the dynamic load on vehicle shimmy should be taken into account. Based on the dynamic model of a quarter vehicle, a three-degrees-of-freedom dynamic model of the shimmy system with consideration of the road roughness excitation is established by applying the second Lagrange equation. The response characteristic of the system is investigated by the numerical simulations. Moreover, the complexification-averaging method is used to obtain the analytical expression of the shimmy angle of the front wheel, and then, the stability of periodic solutions of the system is evaluated based on the bifurcation theory. Finally, the saddle-node bifurcation and Hopf bifurcation of the shimmy system are studied. The influence of the system parameters on the bifurcation characteristic of the system is also investigated, and the results obtained by using the complexification-averaging method are compared with the numerical examples.


Author(s):  
Z L Jin ◽  
J S Weng ◽  
H Y Hu

In this paper, a linear vehicle model with three degrees of freedom is established to study the stability of vehicle rollover due to critical driving manoeuvres. From the linear vehicle model, the stability conditions are determined on the basis of the Routh-Hurwitz criterion, and a so-called dynamic stability factor is defined to reveal the effects of system parameters on the stability of vehicle rollover. In order to demonstrate the theoretical results, two numerical examples are given for the rollover of a sport utility vehicle in cornering and lane-change manoeuvres at a high speed and large steering angle. The stability regions are shown with respect to the vehicle speed and the vehicle parameters, such as the longitudinal distance from the centre of gravity to the front axle, and the steering angle of the front wheel.


Author(s):  
Behrouz Najjari ◽  
Mehdi Mirzaei ◽  
Amin Tahouni

This paper looks into the energy management and directional stability of four-in-wheel driven electric vehicles, simultaneously. In the proposed strategy, the optimal driving torques are initially distributed between the wheels by considering the condition for minimum losses of motors using the motor efficiency model. In risky maneuvers, a novel optimal torque vectoring system is developed to intentionally change the initial optimal torques for the generation of required stabilizing yaw moment. For designing the stability controller, a new constrained control method is analytically developed based on the prediction of continuous nonlinear vehicle models. The proposed control method restricts the side-slip angle to guarantee the stability. Also, the required control torque for each motor is restricted within the admissible range according to the motor map. As another result of the constrained strategy, a small change in the optimal energy consumption is occurred for improved stability because of using minimum external yaw moment. In simulation studies, a good performance of the developed control system to provide both directional stability and drivability of electric vehicle with high energy efficiency is presented at different driving conditions using 14-degrees-of-freedom vehicle model. A comparative study with the conventional model predictive control method indicates the speed of the proposed constrained control method and the ease of its solution and implementation.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2930 ◽  
Author(s):  
Jie Tian ◽  
Jie Ding ◽  
Yongpeng Tai ◽  
Ning Chen

A new type of hierarchical control is proposed for a four-wheel-steering (4WS) vehicle, in which both the sideslip angle and yaw rate feedback are used, and the saturation of the control variables (i.e., the front and rear steering angles) is considered. The nonlinear three degrees of freedom (3DOF) 4WS vehicle model is employed to describe the uncertainties originating from the operating situations. Further, a normal front-wheel-steering (2WS) vehicle with a drop filter of the sideslip angle is selected as the reference model. The inputs for the rear and front steering angles of the linear 2DOF 4WS, required to achieve the performances described by the reference model, are obtained and controlled by the upper controller. Further, the lower controller is designed to eliminate the state error between the linear 2DOF and nonlinear 3DOF 4WS vehicle models. The simulation results of several vehicle models with/without the controller are presented, and the robustness of the hierarchical control system is analyzed. The simulation results indicate that using the proposed hierarchical controller yields the same performance between the nonlinear 4WS vehicle and the reference model, in addition to exhibiting good robustness.


Sign in / Sign up

Export Citation Format

Share Document