Effect of Different Airfoils on Performance of Axial Fan

2014 ◽  
Vol 945-949 ◽  
pp. 928-934
Author(s):  
Bang Lun Zhou ◽  
Jian Ping Yuan ◽  
Zhi Xia He ◽  
Feng Hong

Airfoil has great influence on the performance of axial fan. In order to study performance of axial fan. Four kinds of airfoils have been applied to optimize the impeller of axial fan. The 3D internal flows of the axial fan under different operating conditions were simulated based on a steady numerical method in ANSYS CFX 14.5. The results show that the curve of total pressure of the fan with LS airfoil blades is slightly steeper, and that of the fan with CLARK-Y(C=11.7%) (C is the blade thickness ratio) airfoil blades is relatively flat. The total pressure of the axial fan with CLARK-Y(C=11.7%) blades is highest among others. While achieving the highest efficiency in all the operating conditions except the lowest flow rate. Moreover, the blades loading of the CLARK-Y(C=11.7%) airfoil blades fan is entirely more uniform than that in others. The turbulent kinetic energy distribution on the leading edge of blades shows that the axial fan with CLARK-Y(C=11.7%) airfoil blades fan can improve the turbulent kinetic energy effectively.

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4136
Author(s):  
Clemens Gößnitzer ◽  
Shawn Givler

Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limitations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling control strategies, improving engine design and reducing the negative impact of CCV on engine operation. This paper presents a new simulation strategy which allows investigation of the impact of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle, simulation results just prior to each spark timing are taken. Next, simulation results from different cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle, and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a new snapshot. With the combined snapshot, the simulation is continued until the end of combustion. The results obtained with combined snapshots show that the velocity field seems to have the highest impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small compared to the flow field. This novel methodology is very flexible and allows investigation of the sources of CCV which have been difficult to investigate in the past.


Author(s):  
Benjamin Pardowitz ◽  
Ulf Tapken ◽  
Lars Neuhaus ◽  
Lars Enghardt

Rotating instability (RI) occurs at off-design conditions in axial compressors, predominantly in rotor configurations with large tip clearances. Characteristic spectral signatures with side-by-side peaks below the blade passing frequency (BPF) are typically referred to RI located in the clearance region next to the leading edge (LE). Each peak can be assigned to a dominant circumferential mode. RI is the source of the clearance noise (CN) and an indicator for critical operating conditions. Earlier studies at an annular cascade pointed out that RI modes of different circumferential orders occur stochastically distributed in time and independently from each other, which is contradictory to existing explanations of RI. Purpose of the present study is to verify this generally with regard to axial rotor configurations. Experiments were conducted on a laboratory axial fan stage mainly using unsteady pressure measurements in a sensor ring near the rotor LE. A mode decomposition based on cross spectral matrices was used to analyze the spectral and modal RI patterns upstream of the rotor. Additionally, a time-resolved analysis based on a spatial discrete-Fourier-transform (DFT) was applied to clarify the temporal characteristics of the RI modes and their potential interrelations. The results and a comparison with the previous findings on the annular cascade corroborate a new hypothesis about the basic RI mechanism. This hypothesis implies that instability waves of different wavelengths are generated stochastically in a shear layer resulting from a backflow in the tip clearance region.


Author(s):  
Jie Wang ◽  
Qun Zheng ◽  
Lanxin Sun ◽  
Mingcong Luo

Generally, droplets are injected into air at inlet or interstage of a compressor. However, both cases did not consider how to utilize the kinetic energy of these moving droplets. Under the adverse pressure gradient of compressor, the lower energy fluids of blade surfaces and endwalls boundary layers would accumulate and separate. Kinetic droplets could accelerate the lower energy fluids and eliminate the separation. This paper mainly investigate the effective positions where to inject water and how to utilize the droplets’ kinetic energy. Four different injecting positions, which located on the suction surface and endwall, are chosen. The changes of vortexes in the compressor cascade are discussed carefully. In addition, the influences of water injection on temperature, total pressure losses and Mach number are analyzed. Numerical simulations are performed for a highly loaded compressor cascade with ANSYS CFX software.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 691
Author(s):  
Peng Lin ◽  
Yan Jin ◽  
Fu Yang ◽  
Ziyu Liu ◽  
Rundong Jing ◽  
...  

In continuous casting, the nozzle position may deviate from the center under actual operating conditions, which may cause periodic fluctuation of the steel-slag interface and easily lead to slag entrapment and gas absorption. Swirling nozzles can reduce these negative effects. A mathematical simulation method based on a round mold of steel components with a 600 mm diameter is applied to study the flow field of molten steel in a mold. The swirling nozzle is optimized through the establishment of a fluid dynamics model. Meanwhile, a 1:2 hydraulic model is established for validation experiments. The results show that, when the submerged entry nozzle (SEN) is eccentric in the mold, it results in serious bias flow, increasing the drift index in the mold up to 0.46 at the eccentric distance of 50 mm. The impact depth of liquid steel and turbulent kinetic energy can be decreased by increasing the rotation angle of the nozzle. The nozzle with one bottom hole, which significantly decreases the bottom pressure and turbulent kinetic energy, greatly weakens the scour on nozzle and surface fluctuation. In the eccentric casting condition, using the optimized swirling nozzle that employs a 5-fractional structure, in which the rotation angle of 4 side holes is 30° and there is one bottom outlet, can effectively restrain bias flow and reduce the drift index to 0.28, a decline of more than 39%.


2020 ◽  
pp. 2150083
Author(s):  
Chao Liu ◽  
Hongxun Chen ◽  
Zhengchuan Zhang ◽  
Zheng Ma

In order to reveal the operating characteristics of the pumpjet propulsor, standard [Formula: see text]–[Formula: see text], standard [Formula: see text]–[Formula: see text], RNG [Formula: see text]–[Formula: see text] and SST [Formula: see text]–[Formula: see text] turbulence models were used to conduct steady calculation for the whole flow channels. By comparing the calculation results with experimental data, it was found that the calculation errors were very large in some operating conditions. Therefore, the uncertainty analysis was carried out at all operating conditions of the pumpjet propulsor and the error source was finally determined that it is mainly derived from the model error. Then, the applicability of different turbulence models was analyzed to numerical simulation for the pumpjet propulsor by comparing the internal and external characteristics. It can be seen that the strong turbulent kinetic energy in the guide vane will inevitably cause energy loss, but not necessarily in the impeller. In this area, the increase of turbulent kinetic energy will enhance the mixing and transport of fluids, and the impeller makes the fluids get more energy. In addition, a modified hybrid Reynolds Average Numerical Simulation/Large Eddy Simulation (RANS/LES) model was proposed for unsteady calculation, and the performances, internal flow states and the interaction between the pump and the outer region were further revealed under various conditions of the pumpjet propulsor, which provides some references for predicting accurately and selecting conditions optimally in the future.


1978 ◽  
Vol 100 (2) ◽  
pp. 224-228 ◽  
Author(s):  
Terukazu Ota ◽  
Masashi Narita

Turbulence measurements were made in the separated, reattached, and redeveloped regions of a two-dimensional incompressible air flow over a flat plate with finite thickness and blunt leading edge. In the boundary layer downstream of the reattachment point, Prandtl’s mixing length and turbulent kinetic energy length scale are estimated, and the correlation between the turbulent shear stress and the turbulent kinetic energy is described.


Author(s):  
Vishwas Verma ◽  
Gursharanjit Singh ◽  
AM Pradeep

Inlet flow non-uniformity, commonly known as inflow distortion, has been a long-standing problem in the history of gas turbine engines. Distortion can be present in the form of total pressure, total temperature or inflow incidence or any combinations of these. The search for better and robust performance requires engines that can sustain a large amount of inlet distortion without considerable loss in the thrust. In the present paper, the effect of total pressure distortion on a single-stage compressor and low bypass ratio fans are studied. Distortion near hub and tip in the form of step radial total pressure profiles is imposed at far upstream of the rotor leading edge. A systematic approach to qualitatively predict the performance maps in the presence of these distortions is discussed. Further, two extents of total pressure distortion are explored for constant inlet distortion intensity. Hub distortion is found to increase the stability margin, whereas tip distortion reduces it. On extending the distortion extent, hub distortion drastically reduces the stability margin, whereas a comparatively lower reduction in stability margin with tip distortion is observed. The critical distortion limit is observed by varying the inlet distortion extent. Also, it is found that downstream ducts in the bypass axial fan do not interact with the upstream fan. This can be exploited to perform independent simulations of the core engine from low bypass ratio fans. Hub distortion is found to drastically affect the duct performance owing to the presence of thicker upstream inlet boundary layer.


2014 ◽  
Vol 1023 ◽  
pp. 150-153
Author(s):  
Xin Chen ◽  
Wu Zhang ◽  
Yuan Qiang Wu ◽  
Huai Yu Wang ◽  
Hou Yu Ning

This paper aims to study the impact of the rearview mirror shape on aerodynamic performance. Two typical rearview mirrors were selected to conduct the wind tunnel test, and the test result showed that the noise on the rear monitoring point of the mirror 1 was lower than that of the mirror 2. This paper then conducted simulating computation through computational fluid mechanics (CFD) theory and Fluent software, and obtained the size of the monitoring points of the two typical rearview mirrors, static pressure chart, motion pattern and turbulent kinetic energy distribution diagram, and sequentially analyzed the reason for more noise of the mirror 2. The study shows that different mirror cover structures have a great influence on the flow line flowing through the rearview mirror cover, and significantly influenced the rear flow field of the rearview mirror and the static pressure and the turbulent kinetic energy of the monitoring point.


Author(s):  
Chetan S. Mistry ◽  
A. M. Pradeep

This paper discusses the results of a parametric study of a pair of contra-rotating axial fan rotors. The rotors were designed to deliver a mass flow of 6 kg/s at 2400 rpm. The blades were designed with a low hub-tip ratio of 0.35 and an aspect ratio of 3.0. Numerical and experimental studies were carried out on these contra-rotating rotors operating at a Reynolds number of 1.25 × 105 (based on blade chord). The axial spacing between the rotors was varied between 50 to 120 % of the chord of rotor 1. The performance of the rotors was evaluated at each of these spacing at design and off-design speeds. The results from the numerical study (using ANSYS CFX) were validated using experimental data. In spite of certain limitations of CFD under certain operating conditions, it was observed that the results agreed well with those from the experiments. The performance of the fan was evaluated based on the variations of total pressure, velocity components and flow angles at design and off-design operating conditions. The measurement of total pressure, flow angles etc. are taken upstream of the first rotor, between the two rotors and downstream of the second rotor. It was observed that the aerodynamics of the flow through a contra rotating stage is significantly influenced by the axial spacing between the rotors and the speed ratio of the rotors. With increasing speed ratios, the strong suction generated by the second rotor, improves the stage pressure rise and the stall margin. Lower axial spacing on the other hand, changes the flow incidence to the second rotor and thereby improves the overall performance of the stage. The performance is investigated at different speed ratios of the rotors at varying axial spacing.


Sign in / Sign up

Export Citation Format

Share Document