Study on Tool Wear of Cutting Ti-6Al-4V with Water Steam as Coolant and Lubricant in Green Machining

2010 ◽  
Vol 97-101 ◽  
pp. 2365-2368
Author(s):  
Yue Zhang ◽  
Rong Di Han ◽  
Tai Li Sun ◽  
Qi Dong Li ◽  
Xi Chuan Zhang

To achieve green machining of titanium alloy Ti-6Al-4V with water steam cooling and lubricating, a 600-800w minitype generator is developed. Compared to dry and water-based emulsion, the using of water steam improves Ti-6Al-4V machinability and prolongs the tool life about 1 time and 0.5 times. And if the same tool life was selected, it would be easy to obtain that as water steam applied the cutting speed can increase about 15% and 10%. As a result, the productivity can be increased. The excellent cooling and lubricating action of water steam could be summarized that water molecule has a small diameter and high speed, can be easily and rapidly to penetrate the capillaries and proceed adsorption in the cutting zone. The results indicate that the using of water steam has the potential to attain the green machining of titanium alloy Ti-6Al-4V.

2010 ◽  
Vol 426-427 ◽  
pp. 186-190 ◽  
Author(s):  
Yue Zhang ◽  
Rong Di Han ◽  
Yan Li Tang ◽  
Y. Wang

To achieve green cutting of titanium alloy Ti-6Al-4V with water steam cooling and lubricating, a 600-800w minitype generator is developed. Compared to dry and water-based emulsion, the using of water steam decreases the main cutting force and the cutting temperature respectively; enhances the machined surface appearance. And it can help to chip forming and breaking. Water steam application also improves Ti-6Al-4V machinability and prolongs the tool life. The excellent cooling and lubricating action of water steam could be summarized that water molecule has polarity, small diameter and high speed, can be easily and rapidly to proceed adsorption in the cutting zone. The results indicate that the using of water steam has the potential to attain the green cutting of titanium alloy.


2012 ◽  
Vol 580 ◽  
pp. 7-11
Author(s):  
Yue Zhang ◽  
Li Han ◽  
You Jun Zhang ◽  
Xi Chuan Zhang

The machining process of titanium alloys always need special control by using coolant and lubricant as it is one of the difficult-to-cut materials. The cutting experiments are carried out based on green cooling and lubricating technology. To achieve green cutting of titanium alloy Ti-6Al-4V with water vapor cooling and lubricating, a minitype generator is developed. Compared to dry and wet cutting, the using of water vapor decreases the cutting force and the cutting temperature respectively; enhances the machined surface. And it can help to chip forming and breaking. Water vapor application also improves Ti-6Al-4V machinability. The excellent cooling and lubricating action of water vapor could be summarized that water molecule has polarity, small diameter and high speed, can be easily and rapidly to proceed adsorption in the cutting zone. The results indicate that the using of water vapor has the potential to attain the green cutting of titanium alloy.


2009 ◽  
Vol 69-70 ◽  
pp. 451-455
Author(s):  
Guo Sheng Geng ◽  
Jiu Hua Xu

High Speed Machining (HSM) has been proved to be useful in the machining of many materials. This research is concerned with the performance of HSM in the milling of Ti-6.5Al-2Zr-1Mo-1V (TA15) titanium alloy. The tool life and wear mechanism of the milling tool under different cutting speed were investigated, and the influences of cutting speed on the surface integrity and fatigue property of the machined part were studied. According to the experimental results, acceptable tool life can be obtained in a speed range up to 200m/min. The results also show that increasing cutting speed can help to improve the surface integrity and fatigue property of the machined part.


2010 ◽  
Vol 139-141 ◽  
pp. 681-684
Author(s):  
Yue Zhang ◽  
Li Han ◽  
Qi Dong Li ◽  
Tai Li Sun ◽  
Xi Chuan Zhang

The machining process of titanium alloys always need special control by using coolant and lubricant as it is one of the difficult-to-cut materials. To achieve green cutting of titanium alloy Ti-6Al-4V with water vapor cooling and lubricating, a minitype generator is developed. Compared to dry and wet cutting, the using of water vapor decreases the cutting force and the cutting temperature respectively; enhances the machined surface appearance. Water vapor application also improves Ti-6Al-4V machinability. The excellent cooling and lubricating action of water vapor could be summarized that water molecule has polarity, small diameter and high speed, can be easily and rapidly to proceed adsorption in the cutting zone. The results indicate that the using of water vapor has the potential to attain the green cutting of titanium alloy instead of cutting floods.


2016 ◽  
Vol 1136 ◽  
pp. 251-256
Author(s):  
Tomonori Kimura ◽  
Takekazu Sawa ◽  
Tatsuyuki Kamijyo

A titanium alloy and stainless steel is an excellent material having properties such as high intensity and high corrosion resistance. Therefore, a titanium alloy and a stainless steel are used as material of steam turbine blade. However, the machining efficiency of a titanium alloy and a stainless steel is a low because of difficult-to-cut materials. Especially, it is a major problem that the cutting point temperature is high and the tool life is short. In the conventional study, it is reported that the cutting point temperature is low and the tool life becomes long by cutting at the suitable cutting speed corresponding to material characteristics. This concept is known as high speed milling. In recent years, the high speed milling is actually used for the metal mold machining. In this study, the high speed milling of the titanium alloy and the stainless steel was tried for the purpose of high efficiency cutting of a steam turbine blade. In the experiment, the cutting tool used the TiAlN coating radius solid end mill made of micro grain cemented carbide. The diameter of endmill is 5mm. The corner radius is 0.2mm. And, the work piece is the titanium alloy Ti-6Al-4V and stainless steel 13Cr. The cutting speed carried out at 100m/min~600m/min. As the result, when the tool life and the surface roughness was a valuation basis, the optimum cutting speed of titanium alloy was 300m/min. On the other hand, In the case of the stainless steel, the flank wear becomes large in proportion to cutting speed. The feature of high speed milling was not able to be confirmed in the range of this experimental condition.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Vincent A Balogun ◽  
Isuamfon F Edem ◽  
Etimbuk B Bassey

The use of electrical energy and coolants/lubricants has been widely reported in mechanical machining. However, increased research and process innovation in high speed machining has brought about optimised manufacturing cycle times. This has promoted dry machining and the use of minimum quantity lubrication (MQL). This work understudies the impact of different cutting environments in machining H13 tool steel alloys at transition speed regime with emphasis on sustainable machining of the alloy. To achieve this, end milling tests were performed on AISI H13 steel alloy (192 BHN) on a MIKRON HSM 400 high speed machining centre using milling inserts. After each cutting pass, the milling insert was removed for tool wear measurement on the digital microscope. The electrical power consumed was measured with the Fluke 435 power clamp meter mounted on the three phase cable at the back of the machine. It was discovered that MQL has a promising advantage in terms of tool life with 25 minutes of machining, net power requirement of 10% when compared to dry cutting, and environmental benefits when machining H13 tool steel alloy. This work is fundamentally important in assessing the environmental credentials and resource efficiency regime for green machining of H13 tool steel alloysKeywords— H13 tool steel, green machining, process optimization, tool life, cutting environments, energy consumption 


Author(s):  
Mitsuru Hasegawa ◽  
Tatsuya Sugihara

Abstract In cutting of Ti-6Al-4V alloy, the cutting speed is limited since a high cutting temperature leads to severe tool wear and short tool life, resulting in poor production efficiency. On the other hand, some recent literature has reported that various beneficial effects can be provided by forming micro-textures on the tool surface in the metal cutting process. In this study, in order to achieve high-performance machining of Ti-6Al-4V, we first investigated the mechanism of the tool failure process for a cemented carbide cutting tool in high-speed turning of Ti-6Al-4V. Based on the results, cutting tools with micro textured surfaces were developed under the consideration of a cutting fluid action. A series of experiments showed that the textured rake face successfully decreases the cutting temperature, resulting in a significant suppression of both crater wear and flank wear. In addition, the temperature zone where the texture tool is effective in terms of the tool life in the Ti-6Al-4V cutting was discussed.


Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 464
Author(s):  
Alain Gil Del Val ◽  
Fernando Veiga ◽  
Octavio Pereira ◽  
Luis Norberto Lopez De Lacalle

Threading holes using tapping tools is a widely used machining operation in the industry. This manufacturing process involves a great tool immersion in the part, which involves both friction and cutting. This makes the use of coatings critical to improving tool life. Four coatings are used based on Physical vapor deposition (PVD) technology—TiN, TiCN, TiAlN and TiAlN+WC/C are compared to uncoated tool performance. The effect of various coatings on the life of M12 × 1.5 tapping tools during threading of through holes 20 mm deep, in GG25 casting plates, dry and applying cutting speed of 50 m/min. The end-of-life criterion has been established based on a cutting torque of 16 N-m. Taking the uncoated tap as a basis for comparison, it is observed that coatings based on PVD technologies increase tool life doubling in the most advantageous case with the TiAlN coating. PVD type coatings provide better protection to wear at cylindrical area of the tool, where the thread profile is finished, than uncoated taps. The teeth located in the cone-cylinder transition zone of the taps suffer the most wear regardless of the coating. However, taps coated with TiAlN+WC/C wear level values is lowest of all the coatings tested, which indicates a strong reinforcement in these teeth.


2014 ◽  
Vol 625 ◽  
pp. 60-65 ◽  
Author(s):  
Toshiyuki Obikawa ◽  
Tatsumi Ohno ◽  
Ryuta Nakatsukasa ◽  
Mamoru Hayashi ◽  
Tomohiko Tabata

This paper describes the applicability of air jet assisted (AJA) machining to stainless steel and titanium alloy at high cutting speeds in terms of tool wear and tool life. A specially designed tool holder with an air nozzle very close to the tool tip was prepared for turning stainless steel. From the experimental results, it was found that the application of flood coolant from the side of the end flank face leads to better result in tool life in AJA machining of stainless steel than that from the side of the side flank face. The assistance of air jet can improve the tool life of the M35 CVD coated insert in machining of the stainless steel by 36 to 100% under the optimal conditions in comparison with wet machining. It was also found that the air jet assistance extended the tool life of the S10 PVD coated insert by 48% in turning titanium alloy. The tool life extension of the coated insert in AJA machining titanium alloy is much longer than that of an uncoated carbide insert.


Author(s):  
E. O. Ezugwu ◽  
J. Bonney ◽  
W. F. Sales ◽  
R. B. da Silva

Usage of titanium alloys has increased since the past 50 years despite difficulties encountered during machining. In this study PCD tools were evaluated when machining Ti-6Al-4V alloy at high speed conditions under high pressure coolant supplies. Increase in coolant pressure tend to improve tool life and minimise adhesion of the work material on the cutting tool during machining. Adhesion can be accelerated by the susceptibility of titanium alloy to galling during machining.


Sign in / Sign up

Export Citation Format

Share Document