Preparation of High Pure and Micron-Sized α-Al2O3 Powder by Activated Aluminium Hydrolysis Method

2014 ◽  
Vol 988 ◽  
pp. 89-92 ◽  
Author(s):  
Ran Tao ◽  
Yu Tao Zhao ◽  
Zhi Hong Jia ◽  
Liang Xu

In this paper, high pure α-Al2O3 powder is prepared through active hydrolysis by using high pure aluminum as raw material . Using X-ray diffractometer, scanning electron microscope, laser particle size analyzer and ICP-OES to research the phase transitions, organizational structure, particle size distribution and the purity of the α-Al2O3 powder. The results show that: the high pure α-Al2O3 powder have micrometer level of the size, good dispersion and purity of 5N under atomization, hydrolysis reaction and calcination at 1200°C for three hours.

2018 ◽  
Vol 238 ◽  
pp. 02002
Author(s):  
Fangjing Sun ◽  
Yi Zhang ◽  
Jiawei Zhang ◽  
Xixi Yan ◽  
Xiaoyu Liu ◽  
...  

In this experiment, ultrafine iron phosphate micro-powder was prepared by hydrothermal method which used phosphate slag as an iron source. The effects of reaction temperature, surfactants type and amount on its particle size were explored. The samples were characterized by using Malvern Laser Particle Size Analyzer (MS2000), X-Ray Diffractometer (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray Spectroscopy (EDX).The results showed that at 160 °C, 1 wt%CTAB, monoclinic iron phosphate micro-powder was obtained with an average particle size about 0.4 μm which also has a good dispersion in aqueous solution.


2010 ◽  
Vol 434-435 ◽  
pp. 850-852
Author(s):  
Qi Wang ◽  
Bo Yin ◽  
Zhen Wang ◽  
Gen Li Shen ◽  
Yun Fa Chen

In present work, ceria microspheres were synthesized by template hydrothermal method. Crystalline form of the as-synthesized ceria microspheres was defined by X-ray powder diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Dispersibility of ceria microspheres was comprehensively characterized using scanning electron microscope (SEM) observation and laser particle size analyzer. Furthermore, the ultraviolet light absorption performances of ceria microspheres with several different sizes were compared by ultraviolet visible spectrophotometer. The results showed that ceria microspheres presented excellent UV absorbent property and the size influence was remarkable.


2006 ◽  
Vol 510-511 ◽  
pp. 850-853
Author(s):  
Kyung Nam Kim ◽  
Dae Yong Shin ◽  
Hyun Park

Sericite has the intermediate nature of the muscovite and illite, which has been used as the additive of the cosmetics, the ceramic industry, welding rods, and other various pigments and the paint. In this study, the characteristics of sericite were examined using XRD(X-ray diffractometer), XRF(X-ray fluorescence spectrometer), TG-DTA(Thermal Analyzer), SEM(Scanning Electron Microscope) and PSA(Particle Size Analyzer). The raw ore is composed of 60.90wt% SiO2, 7.88wt% K2O, 0.36wt% TiO2, 24.80wt% Al2O3, 1.64wt% Fe2O3, 2.39wt% CaO, and 0.83wt% MgO. After sericite was purified, the content of SiO2 decreased from 60.9wt% to 51.4wt%, and in the crystal phase the intensity of quartz decreased significantly. For the high grade purification of sericite, the removal of iron and separation of quartz for the raw ore (sericite), the hydrocyclone were used with the magnetic separator. The content of iron was reduced from 1.64wt% to 0.91wt%.


2014 ◽  
Vol 881-883 ◽  
pp. 1568-1571
Author(s):  
Zhi Qiang Ning ◽  
Ling Ling Zhang

The phase composition and particle size of the boron mud is investigated by X-ray diffractometry (XRD), scanning electron microscope (SEM) and laser particle size analyzer. The mainly phase composition of the boron mud are magnesite (MgCO3) and forsterite (Mg2SiO4). The mainly phase composition of the calcined boron mud are forsterite (Mg2SiO4) and a small amount magnesia (MgO). the sizes of the boron mud are about 2~6μm and a few of them are bigger and less than 10μm and the particle size of less than 10μm is about 60%.


2012 ◽  
Vol 620 ◽  
pp. 384-388
Author(s):  
Sharifah Aishah Syed Salim ◽  
Julie Juliewatty Mohamed ◽  
Zainal Arifin Ahmad ◽  
Zainal Arifin Ahmad

Numerous methods have been used to produce high purity TiC. There is no previous study has been reported on the formation using single elemental powders of Titanium (Ti) and Carbon (C) with addition Nickel (Ni) by tungsten inert gas (TIG) weld method. In this work, TiC was synthesized via TIG method by arc melting elemental powder mixture of Ti and C at ~5 second (s) and 80 ampere (A). The effect Ni contents on TiC formation was investigated. The mixed raw material was ball milled for 24 hours followed by synthesis via TIG method. The arced samples were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM). It was revealed, that small amount of Ni additive to the metal powder allows the production of dense and tough TiC.


2018 ◽  
Vol 163 ◽  
pp. 05008
Author(s):  
Anna Skawińska

This paper presents the results of the studies carried out in the model systems and concerning the tobermorite synthesis with an addition of metahalloysite. Quartz sand and quicklime were the main raw material constituents. The mixtures in the form of slurries underwent hydrothermal treatment with an addition of metahalloysite (5%, 10%, 15%, 20% and 30%) for 4 hours and 12 hours. The resultant composites were analysed for their phase composition using X-ray powder diffraction. The microstructure was examined using the Scanning Electron Microscope. Tobermorite was the principle reaction product. When 30% metahalloysite was added to the mixture containing CaO and SiO2, the formation of katoite was found.


2020 ◽  
Vol 866 ◽  
pp. 115-124
Author(s):  
Zhan Kui Wang ◽  
Ming Hua Pang ◽  
Jian Xiu Su ◽  
Jian Guo Yao

In this paper, a series of chemical mechanical polishing (CMP) experiments for magnesia alumina (Mg-Al) spinel were carried out with different abrasives, and the materials removal rate (MRR) and surface quality was evaluated to explore their different effects. The scanning electron microscope (SEM) and laser particle size analyzer were also employed to test the micro-shape and size distribution of abrasives. Then, the mechanism of different effects with different abrasives was analyzed in CMP for Mg-Al spinel. Those experimental results suggest that different subjecting pressure ratios of abrasives to polishing pad with different abrasive are the key factors leading to difference polishing performances in CMP.


2013 ◽  
Vol 860-863 ◽  
pp. 956-959
Author(s):  
Xing Hua Liang ◽  
Lin Shi ◽  
Yu Si Liu ◽  
Tian Jiao Liu ◽  
Chao Chao Ye ◽  
...  

The High Potential Material Lini0.5Mn1.5O4 was Synthesized via Solid-State Reaction.The Surface Morphology and Particle Size of the Sample were Observed by Scanning Electron Microscope(SEM).The Crystal Structure of the Sample was Collected and Analyzed through X-Ray Diffractometry(XRD).The Sample was Charaterized by Charge-Discharge Tests.Results Indicated that the Cycling Retention Rate was about 80%,after being Charge-Diacharged at a Rate of 0.1C in a Voltage of 3.45-4.77V for 10 Times.Compared with Limn2O4,LiNi0.5Mn1.5O4 has good cycle performance.Both of LiNi0.5Mn1.5O4 structure were space group of Fd3m.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012069
Author(s):  
Shibin Liu ◽  
Jing Wang ◽  
Jianwei Xu ◽  
Xiangcai Meng

Abstract Used Al-13wt%Si alloy was as raw material, the influence mechanism of Al-Sr, Al-P and Al-RE ternary compound modifier was studied by casting technology. The effects of P, Sr and RE modification on Al-13wt% Si were studied by metallographic microscope, scanning electron microscope and X-ray. The effects of the addition order and amount of modifier on the microstructure of Al-13wt% Si were investigated The results show that compared with a single modifier, P + RE + Sr ternary composite modifier has more obvious modification effect on eutectic silicon in Al-13%Si alloy: the microstructure of different morphology can be obtained by using different amount and order of adding modifier. When the amount and order of modifier are 0.5wt%Sr, 0.7wt%P, 1.5wt%RE,the eutectic silicon with small size and uniform distribution can be obtained. Eutectic silicon consists of 70 μm, the slender lamella is refined to 5 μm.


Author(s):  
Dewi Elok Rahmawati ◽  
Lilik Miftahul Khoiroh ◽  
Rachmawati Ningsih ◽  
Febi Yusniyanti ◽  
Wariatus Solawati ◽  
...  

<p class="02abstracttext"><span lang="PT-BR">Iron lathe waste powder has the potential as a raw material in the synthesis of hematite pigments. Hematite pigments have many advantages, one of which is anti-swelling properties that can maintain the dimensions of wood. Hematite pigment synthesis was carried out using the precipitation-sonication method. The precipitation stage uses an ammonium hydroxide solution as a precipitating agent. Stages of sonication using the PEG-6000 template were performed at different times were 30, 45, and 90 minutes then calcined at 750 ° C for 3 hours. The samples were characterized by X-ray diffraction (XRD), color reader, and scanning electron microscope-energy dispersive <br /> X-Ray (SEM-EDX). The result confirmed that a ferrihydrite phase obtained after the precipitation process and transform into hematite after the calcination process with the highest degree of crystallinity for 90-minute sonication. From a color reader, the brightness and redness degrees decrease with increasing time. Scanning electron microscope results illustrated that the morphology was not uniform with the particle size getting smaller with increasing sonication time. The EDX results show that hematite pigments still contain impurities such as carbon. The swelling test indicated that the highest stability in hematite-pigmented wood increased as increasing in the weight of pigment.</span></p>


Sign in / Sign up

Export Citation Format

Share Document