Microstructure Evolution in Samples Prepared by Filter Pressing and Sintering of Zirconia Nanopowder

2006 ◽  
Vol 45 ◽  
pp. 572-577
Author(s):  
Łukasz Zych ◽  
Krzysztof Haberko

The aim of this work was the investigation of microstructure evolution during sintering of zirconia nanopowder. The powder containing 97 mol. % ZrO2 and 3 mol. %Y2O3, with particle size about 8 nm was prepared by the hydrothermal method. The flocculated and dispersed water suspensions of the powder were filter pressed under 5 MPa, which led to green bodies of relative density about 40%. Samples prepared from the suspensions showed distinct differences in densification behaviour. The observation of the microstructure evolution (i.e. density, fracture surface) in samples heat-treated at different temperatures, and detailed analysis of open porosity evolution were performed.

2010 ◽  
Vol 434-435 ◽  
pp. 335-339
Author(s):  
Han Wang ◽  
Xiao Hui Wang ◽  
Shao Peng Zhang ◽  
Long Tu Li ◽  
Zhao Hui Huang

In this paper, the effect of gel-calcination on piezoelectric property in (1-x) BiScO3-xPbTiO3 with the composition of x=0.635 is investigated. According to previous work, the heating rate of 200°C/h and holding for 210min having been taken as the basic processing condition. The BSPT powders were obtained from the same sol solution but calcined at different temperatures, and then the powders were used to prepare BSPT ceramics. The result shows that for the bulk ceramics with higher relative density ( higher than 95%), with the increasing calcining temperature of the gel (from 420°C to 500°C), the piezoelectric coefficient d33 of ceramic specimens first increases to maximum of 636pC/N at 450°C, then shows a fluctuation. In this work how the powder activity and the grain size affect (which was leaded by powder particle size) piezoelectric properties of BSPT ceramics are discussed.


2012 ◽  
Vol 724 ◽  
pp. 49-52 ◽  
Author(s):  
Woo Teck Kwon ◽  
Soo Ryong Kim ◽  
Y. Kim ◽  
Yoon Joo Lee ◽  
Eun Jin Jung ◽  
...  

β-SiC powder was synthesized directly from silicon sludge with carbon black. Large amount of silicon sludge is generated from Solar Cell industry. In an environmental and economic point of view, recycling silicon sludge is important. In this study, two kinds of silicon sludge were characterized using XRD, SEM/EDS and FT-IR. SiC powder was synthesized by the reaction of ball-milled silicon powder for 3h in vacuum at different temperatures (1350 and 1600). Physical properties of the heat treated SiC have been characterized using a SEM, XRD, Particle size analyzer and FT-IR Spectroscopy.


2018 ◽  
Vol 69 (5) ◽  
pp. 1055-1059 ◽  
Author(s):  
Mariana Ciurdas ◽  
Ioana Arina Gherghescu ◽  
Sorin Ciuca ◽  
Alina Daniela Necsulescu ◽  
Cosmin Cotrut ◽  
...  

Aluminium bronzes are exhibiting good corrosion resistance in saline environments combined with high mechanical properties. Their corrosion resistance is obviously confered by the alloy chemical composition, but it can also be improved by heat treatment structural changes. In the present paper, five Cu-Al-Fe-Mn bronze samples were subjected to annealing heat treatments with furnace cooling, water quenching and water quenching followed by tempering at three different temperatures: 200, 400 and 550�C. The heating temperature on annealing and quenching was 900�C. The structure of the heat treated samples was studied by optical and scanning electron microscopy. Subsequently, the five samples were submitted to corrosion tests. The best resistance to galvanic corrosion was showed by the quenched sample, but it can be said that all samples are characterized by close values of open-circuit potentials and corrosion potentials. Concerning the susceptibility to other types of corrosion (selective leaching, pitting, crevice corrosion), the best corrosion resistant structure consists of a solid solution, g2 and k compounds, corresponding to the quenched and 550�C tempered sample.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1647
Author(s):  
Anna Kaczmarek ◽  
Małgorzata Muzolf-Panek

The aim of the study was to develop predictive models of thiol group (SH) level changes in minced raw and heat-treated chicken meat enriched with selected plant extracts (allspice, basil, bay leaf, black seed, cardamom, caraway, cloves, garlic, nutmeg, onion, oregano, rosemary, and thyme) during storage at different temperatures. Meat samples with extract addition were stored under various temperatures (4, 8, 12, 16, and 20 °C). SH changes were measured spectrophotometrically using Ellman’s reagent. Samples stored at 12 °C were used as the external validation dataset. SH content decreased with storage time and temperature. The dependence of SH changes on temperature was adequately modeled by the Arrhenius equation with average high R2 coefficients for raw meat (R2 = 0.951) and heat-treated meat (R2 = 0.968). Kinetic models and artificial neural networks (ANNs) were used to build the predictive models of thiol group decay during meat storage. The obtained results demonstrate that both kinetic Arrhenius (R2 = 0.853 and 0.872 for raw and cooked meat, respectively) and ANN (R2 = 0.803) models can predict thiol group changes in raw and cooked ground chicken meat during storage.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2993
Author(s):  
Dong-won Shin ◽  
Peyala Dharmaiah ◽  
Jun-Woo Song ◽  
Soon-Jik Hong

In this work, Bi0.5Sb1.5Te3 materials were produced by an economically viable and time efficient water atomization process. The powder samples were heat treated at different temperatures (673 K, 723 K, 743 K, 773 K, 803 K, and 823 K) followed by spark plasma sintering (SPS). It was found that the Te evaporated slightly at 723 K and 743 K and became dominated at 773 K, 803 K, and 823 K, which severely influences the thermoelectric properties. The electrical conductivity was significantly improved for over 803 K heat treated samples due to the remarkable improvement in hole concentration. The power factor values for the 803 K and 823 K samples were significantly larger at T > 350 K compared to other samples. Consequently, the peak ZT of 0.92 at 350 K was obtained for the 803 K sample, which could be useful in commercial thermoelectric power generation.


2007 ◽  
Vol 539-543 ◽  
pp. 1863-1867 ◽  
Author(s):  
X.F. Tao ◽  
Li Ping Zhang ◽  
Y.Y. Zhao

This paper investigated the mechanical response of porous copper manufactured by LCS under three-point bending and Charpy impact conditions. The effects of the compaction pressure and K2CO3 particle size used in producing the porous copper samples and the relative density of the samples were studied. The apparent modulus, flexural strength and energy absorption capacity in three-point bending tests increased exponentially with increasing relative density. The impact strength was not markedly sensitive to relative density and had values within 7 – 9 kJ/m2 for the relative densities in the range 0.17 – 0.31. The amount of energy absorbed by a porous copper sample in the impact test was much higher than that absorbed in the three-point bending test, impling that loading strain rate had a significant effect on the deformation mechanisms. Increasing compaction pressure and increasing K2CO3 particle size resulted in significant increases in the flexural strength and the bending energy absorption capacity, both owing to the reduced sintering defects.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Guanghui Jiang ◽  
Jianping Zuo ◽  
Teng Ma ◽  
Xu Wei

Understanding the change of permeability of rocks before and after heating is of great significance for exploitation of hydrocarbon resources and disposal of nuclear waste. The rock permeability under high temperature cannot be measured with most of the existing methods. In this paper, quality, wave velocity, and permeability of granite specimen from Maluanshan tunnel are measured after high temperature processing. Quality and wave velocity of granite decrease and permeability of granite increases with increasing temperature. Using porosity as the medium, a new wave velocity-permeability model is established with modified wave velocity-porosity formula and Kozeny-Carman formula. Under some given wave velocities and corresponding permeabilities through experiment, the permeabilities at different temperatures and wave velocities can be obtained. By comparing the experimental and the theoretical results, the proposed formulas are verified. In addition, a sensitivity analysis is performed to examine the effect of particle size, wave velocities in rock matrix, and pore fluid on permeability: permeability increases with increasing particle size, wave velocities in rock matrix, and pore fluid; the higher the rock wave velocity, the lower the effect of wave velocities in rock matrix and pore fluid on permeability.


Carbon ◽  
2001 ◽  
Vol 39 (10) ◽  
pp. 1525-1532 ◽  
Author(s):  
Norio Iwashita ◽  
Michael V. Swain ◽  
John S. Field ◽  
Naoto Ohta ◽  
Shingo Bitoh

2008 ◽  
Vol 587-588 ◽  
pp. 380-384
Author(s):  
Jesus Cintas ◽  
José A. Rodríguez ◽  
Francicso Gomez Cuevas ◽  
José M. Gallardo

Mechanically alloyed aluminium powder was prepared by attrition-milling for 10 hours in the presence of a wax. Milled powders were annealed in vacuum at different temperatures (500, 575, 600, 625 and 650°C). Compacts were consolidated starting from unannealed and from 600°Cannealed powders. Studies by SEM microfractography and quantitative metallography, to investigate the influence of Fe-Al intermetallics on compacts fracture, have been carried out. It is concluded that fracture takes place at regions where the area occupied by the intermetallics is high and intermetallics particles are big. Intermetallic particle size can be controlled by an appropriated heat treatment.


Sign in / Sign up

Export Citation Format

Share Document