Ceramic Tool Materials for High Speed Cutting Process

2010 ◽  
Vol 65 ◽  
pp. 56-60 ◽  
Author(s):  
Gabriela Górny ◽  
Roman Pampuch ◽  
Ludosław Stobierski ◽  
Paweł Rutkowski

Frictional and mechanical properties of hot-pressed Al2O3 and Si3N4 - matrix composites containing up to 5 vol. % hexagonal BN as a solid lubricant. A very low coefficient of friction which is necessary for high-speed cutting has been observed. Fracture toughness remained constant with increase of h-BN content while flexural strength changes with the hBN content have been found to depend upon the material homogeneity. The work has been supported by EU Funds in Poland under contract UDA-POIG.01.03-12-024/08-00.and has been realized in the frame of scientific-industrial consortium.

2006 ◽  
Vol 315-316 ◽  
pp. 154-158 ◽  
Author(s):  
Bin Zou ◽  
Chuan Zhen Huang ◽  
Jun Wang ◽  
Bing Qiang Liu

An effect of nano-scale TiN grains on the mechanical properties and microstructure of Si3N4 based ceramic tool materials is investigated at the different sintering temperature. Compared to monolithic Si3N4 ceramic tool materials, the sintering temperature is decreased and mechanical properties is enhanced when only one percent of nano-scale TiN in term of mass is added into the Si3N4 matrix. The optimum mechanical properties are achieved when Si3N4/TiN nanocomposites tool materials were sintered at the sintering conditions of 1650, 30MPa and holding time of 40min. The flexural strength, fracture toughness and hardness are 1018.2MPa, 8.62MPa⋅m1/2 and 14.58GPa respectively. SEM micrographs indicate that microstructure is composed of the elongated and equiaxed β-Si3N4 grains, and some nano-scale TiN grains are enveloped into matrix grains.


2010 ◽  
Vol 431-432 ◽  
pp. 523-526
Author(s):  
Han Lian Liu ◽  
Chuan Zhen Huang ◽  
Shou Rong Xiao ◽  
Hui Wang ◽  
Ming Hong

Under the liquid-phase hot-pressing technique, the multi-scale titanium diboride matrix nanocomposite ceramic tool materials were fabricated by adding both micro-scale and nano-scale TiN particles into TiB2 with Ni and Mo as sintering aids. The effect of content of nano-scale TiN and sintering temperature on the microstructure and mechanical properties was studied. The result showed that flexural strength and fracture toughness of the composites increased first, and then decreased with an increase of the content of nano-scale TiN, while the Vickers hardness decreased with an increase of the content of nano-scale TiN. The optimal mechanical properties were flexural strength 742 MPa, fracture toughness 6.5 MPa•m1/2 and Vickers hardness 17GPa respectively. The intergranular and transgranular fracture mode were observed in the composites. The metal phase can cause ductility toughening and crack bridging, while crack deflection and transgranular fracture mode could be brought by micro-scale TiN and nano-scale TiN respectively.


2014 ◽  
Vol 800-801 ◽  
pp. 511-515
Author(s):  
Xian Hua Tian ◽  
Jun Zhao ◽  
Shuai Liu ◽  
Zhao Chao Gong

Close attention has been paid to Functional graded materials (FGMs) worldwide for their novel design ideas and outstanding properties. To verify the advantage of FGMS in the design of ceramic tool materials, Si3N4/(W, Ti)C nanocomposite ceramic tool materials with homogenous and graded structure were fabricated by hot pressing and sintering technology. The flexural strength, fracture toughness and hardness of the sintered composites were tested and compared. The experimental results showed that the graded structure improved mechanical properties of the ceramic tool materials, especially the flexural strength and fracture toughness. The introduction of residual compressive stress in the surface layer contributes to the improvement of the properties .


2012 ◽  
Vol 723 ◽  
pp. 233-237 ◽  
Author(s):  
Tong Chun Yang ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou ◽  
Hong Tao Zhu ◽  
...  

TiB2-(W,Ti)C composites with (Ni,Mo) as sintering additive have been fabricated by hot-pressing technique, and the microstructure and mechanical properties of the composites have been investigated. (Ni,Mo) promotes grain growth of the composites. In the case of 7vol.% (Ni,Mo), the grain size decreases consistently with an increase in the content of (W,Ti)C. When the proper content of (W,Ti)C is added to TiB2 composites, the growth of matrix grains is inhibited and the mechanical properties of the composites are improved. The best mechanical properties of the composites are 1084.13MPa for three-point flexural strength, 7.80MPa•m 1/2 for fracture toughness and 17.92GPa for Vickers hardness.


2012 ◽  
Vol 499 ◽  
pp. 108-113
Author(s):  
Yu Huan Fei ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou

Al2O3-TiN nanocomposite ceramic tool materials were fabricated by hot-pressing technique and the mechanical properties were measured. Mechanical properties such as room temperature flexural strength, Vickers hardness and fracture toughness were measured through three-point bending test and Vickers indentation. The effects of the content of nano-scale TiN, sintering temperature and holding time on the mechanical properties were investigated. The results shows that the addition of nano-scale TiN can improve the mechanical properties of alumina ceramics. Both the flexural strength and the fracture toughness first increased then decreased with an increment in the content of nano-scale TiN. Both the Vickers hardness and the fracture toughness increased with an increment in the sintering temperature. The flexural strength increased with an increment in the holding time, while the fracture toughness decreased with an increment in the holding time. The composites with only nano-scale TiN have the highest Vickers hardness for the holding time of 30min, while the hardness of the composites with nano-scale TiN and micro-scale TiN decreased with an increment in the holding time.


2010 ◽  
Vol 97-101 ◽  
pp. 1126-1129 ◽  
Author(s):  
Y.Z. Li ◽  
Jun Zhao

A model for designing sandwich nanocomposite ceramic tool materials with symmetrical distribution was presented. By adding nano-sized Al2O3 particles into the submicro-sized Al2O3 and TiCN, Al2O3/TiCN sandwich nanocomposite ceramic tool materials were fabricated by means of powder-laminating and hot-pressing technique. The experimental results showed that optimal mechanical properties were achieved for the composite with the addition of 35 vol.% TiCN particles in the middle layer and 45 vol.% TiCN particles in the outer layers, layer thickness ratio is 0.3, with the flexural strength reaching respectively 900MPa,fracture toughness and Vicker's hardness in the surface layers being 6.5MPa•m1/2 and 19.2GPa.


2012 ◽  
Vol 426 ◽  
pp. 155-158 ◽  
Author(s):  
Lin Liu ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Liang Xu ◽  
H.L. Liu ◽  
...  

TiB2-Ti(C, N)-(Ni, Mo) composite ceramic tool materials were fabricated by the hot-press sintering technology. The effects of the content of Ti(C, N) on the microstructure and mechanical properties were investigated by XRD and SEM observations. It is shown that the grain size of the composites is small, the fracture surface is irregularity, the grain boundaries of TiB2 and Ti(C, N) are connected tightly, and a new crystalline phase of MoNi is formed. A small amount of Ti(C, N) is decomposed into TiN, and the decomposition of Ti(C, N) is intensified as the content of Ti(C, N) is increased during the sintering process. The fracture pattern is the combination of the intergranular mode and transgranular mode. It is found that the flexural strength and fracture toughness of TiB2-Ti(C, N)-(Ni, Mo) composites increase consistently owning to the addition of Ti(C, N), the maximum resultant mechanical properties of TiB2-Ti(C, N)-(Ni, Mo) composites are 1019.53MPa for the flexural strength, 6.89MPa•m1/2 for the fracture toughness and 23.65GPa for Vickers hardness.


Author(s):  
Limei Wang ◽  
Xiaorui Shi ◽  
Bo Wang ◽  
Hanlian Liu ◽  
Chuanzhen Huang ◽  
...  

Abstract Ceramic cutting tools are mainly used in high-speed dry machining, thus the tool material is in high temperature friction state with the workpiece material during cutting. The tribological characterizations have a direct impact on the cutting performance of the tool. Therefore, tribological characterizations of two kinds of ceramic tool materials with different mechanical properties against hardened steel H13 were compared at the same temperature, one material is Al2O3/(W,Ti)C/Ni with Ni(marked as AWTN), another is Al2O3/(W,Ti)C without Ni(marked as AWT). Also, the variation of tribological characterizations of AWT ceramic tool material with different temperatures was emphatically investigated. The results showed that the average friction coefficients of AWT and AWTN decreased with the increase of sliding speed under the same load, and the friction coefficient of AWT was lower than that of AWTN. Although AWTN material had better flexural strength and fracture toughness than AWT at ambient temperature, yet better hardness of AWT material both at room temperature and high temperature led to the lower friction coefficient and lower wear rate, indicating that the hardness had a greater impact on the wear of ceramic tool materials. The friction coefficient of AWT decreased with the increase of load and increased with the increase of temperature. The wear mechanism of Al2O3/(W,Ti)C ceramic tool material was different at different temperatures. The conclusion of this research had important guiding significance for the selection of cutting tools and cutting parameters in order to improve the machining quality.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1815 ◽  
Author(s):  
Zhefei Sun ◽  
Jun Zhao ◽  
Xuchao Wang ◽  
Enzhao Cui ◽  
Hao Yu

Graphene and nano-TiC, which have good reinforcing effects on Al2O3-based ceramic-tool materials, are generally used as additive phases for ceramics. In this study, nine kinds of samples were sintered, to investigate the effects of graphene and nano-TiC on the reinforcing mechanisms of Al2O3-based ceramics. The experimental results indicated that adding 0.5 vol% graphene and 10 vol% nano-TiC can obtain the optimum flexural strength, fracture toughness, and Vickers hardness, which were 705 ± 44 MPa, 7.4 ± 0.4 MPa m1/2, and 20.5 ± 0.8 GPa, respectively. Furthermore, the reinforcing mechanisms of crack bridging, pull-out of graphene, and pull-out of nano-TiC are identified, which are contributed to improving the mechanical properties of ceramics. Meanwhile, other reinforcing mechanisms induced by graphene (graphene break, crack guiding, and 3D propagation) and nano-TiC (crack branching, crack deflection, and peeling) are discussed. These reinforcing mechanisms are coupled together, while decoupling is hard to work out. Thus, further quantitative studies of reinforcing effects of graphene and nano-TiC on Al2O3-based ceramic-tool materials are necessary to be carried out.


2004 ◽  
Vol 471-472 ◽  
pp. 260-263
Author(s):  
Bin Zou ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Sui Lian Wang

Nano-scale ceramic materials are very suitable to be used as the high speed cutting tool owing to their excellent properties. The incorporation of nano-scale second phase, such as SiC and Ti(CxN1-x) particles, into a ceramic matrix can lead to an improvement in mechanical properties, which is contributed to a change in microstructure. However, the differences between nano-scale ceramic materials and monoclinic ceramic materials can be found through fabricating these two kinds of materials. Firstly the changes in microstructure that will affect the mechanical properties of the nano-scale ceramic materials are investigated as the nano-ceramic tools are compared with the monolithic ceramic tools. Secondly the effect of microstructure on the mechanical properties is discussed. Finally the microstructure formation mechanism of nano-ceramic materials is given on the bases of some hypotheses.


Sign in / Sign up

Export Citation Format

Share Document