Bio-Stabilised Earthen Blocks: A Critical Study on Compression Tests of Immersed Samples

Author(s):  
Simon Guihéneuf ◽  
Arnaud Perrot ◽  
Damien Rangeard ◽  
Mathilde Cocheteux

Currently, much consideration is given to earthen building materials regarding their highly sustainable properties. Numerous studies have highlighted their structural ability but their water sensitivity is still limiting a potentially more spread use. To limit this sensitivity several studies have recently brought out the positive effects of bio-stabilisers such as linseed oil or xanthan gum. These recent developments allow bio-stabilized earthen materials to be resistant to immersion in water. Also, a French experimental standard (XP P 13-901) for compressed earth blocks already asks for a minimal compressive strength after a two-hour immersion that is overly severe and is difficult to satisfy without the addition of high contents of hydraulic binders. In this paper, a critical study of this compressive test after immersion is conducted on bio-stabilized (linseed oil and xanthan gum) samples of different Breton earths. Some testing adjustments are suggested and the water-diffusion in the samples is followed and linked to previously obtained capillary absorption coefficients. It is shown that the effect of immersion on the mechanical strength depends on the sample size and that an equivalence between size and immersion time can be made based on an equivalent penetration depth. Linseed oil and xanthan gum help to significantly increase the compressive strength of the earthen materials after immersion and allow to avoid the addition of hydraulic binders in earthen blocks to obtained a strong water resistance. The water diffusion in the sample during the immersion can be linked to capillary absorption behaviour, thus a water content and a compressive strength after a given time of immersion could be easily predicted.

Author(s):  
Mathieu Audren ◽  
Simon Guihéneuf ◽  
Damien Rangeard ◽  
Arnaud Perrot

Development of earthen building materials is one of the answers that the construction sector can provide to tackle the accelerated climate change issue. However, these materials present a wide variability, even at the local scale, and their water durability can be difficult to ensure. In order to improve their durability regarding water and avoid its prejudicial effect on earthen material’s properties, the stabilisation with bio-polymers is an increasingly studied solution. In this paper a ten-minute erosion drip test is developed and performed for various combinations of Breton earths and bio-based additions or surface treatments (linseed oil, xanthan gum, casein, alginate, vegetal varnish and tannins). The final pitting depths and eroded volumes are compared and the evolution of erosion during the test is monitored. These results are also linked to previously obtained water capillary absorption coefficients. The obtained results enable to highlight the impact of bio-based additions on erodibility of earthen materials: linseed oil and xanthan gum help to protect the earth-based samples from erosion. Other original parameters characterizing the erosion of the samples during the drip test are suggested. Limitations of this type of erosion tests are also brought out.


Author(s):  
Simon Guihéneuf ◽  
Arnaud Perrot ◽  
Damien Rangeard

In the current context, the development of new bio-based and local building materials is becoming mandatory. Among them, earthen materials have a strong potential to be used as sustainable structural materials but their variability and their water sensitivity impact their mechanical properties that are difficult to guaranty. Recent developments have emphasised the ability of some bio-based additions to help to ensure these properties: linseed oil and xanthan gum are part of them. In this paper three different Breton earths, representative of a certain local variability, are studied. The impact of the selected bio-based additions on earths’ rheological behaviour is followed in order to adapt it to different forming processes. Then, the mechanical properties of different earth-addition combinations at the dry state, exposed to hygric variations and immersion are investigated for different forming processes. The findings highlight the fact that xanthan gum and linseed oil have a relevant ability to stabilise earthen blocks, that can be processed using different promising forming methods.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3216
Author(s):  
Jin Li ◽  
Peiyuan Chen ◽  
Haibing Cai ◽  
Ying Xu ◽  
Chunchao Li

In this study, rice husk ash (RHA) was explored as a strength enhancer for mortars containing waste rubber. The effects of RHA on the flow, mechanical strength, chloride resistance, and capillary absorption of rubber mortar were investigated by substituting up to 20% cement with RHA. The experimental results showed that the incorporation of rubber into mortar could be safely achieved by adding RHA as a cement substitute by up to 20% without compromising the compressive strength of mortar. Moreover, the RHA also exerted positive effects on the enhancement of the chloride resistance as well as the capillary absorption of rubber mortars, for which 15% RHA was found to be the optimal dosage.


2014 ◽  
Vol 1079-1080 ◽  
pp. 58-61 ◽  
Author(s):  
Vitaliy Gladkikh ◽  
Evgenij Valerjevich Korolev ◽  
Olga I. Poddaeva ◽  
Vladimir A. Smirnov

Currently, there is a strong need of high-performance and environment-friendly paving materials in Russian Federation. Sulfur dumps near the oil industry enterprises consumes area which otherwise could be occupied by vegetation, contributing to the improvement of the environmental situation. Incorporation of sulfur in bulk building materials contributes to decrease of load to the environment. The results of numerous studies of sulfur-extended asphalt concretes are summarized in the present work. For the suppression of hydrogen sulfide and sulfur dioxide we propose to use the complex nanoscale modifier. The application of such modifier leads to several positive effects. Both amount of sulfur in constructional mix and mobility of the mix can be increased. The values of operational properties, notably compressive strength and resistance to rutting, can also be increased. Due to consumption of industrial by-product, the environmental load decreases in regions near the oil and gas industry enterprises.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4008
Author(s):  
Zhengkai Feng ◽  
Heng Wang ◽  
Chuanjiang Wang ◽  
Xiujuan Sun ◽  
Shuai Zhang

Fused deposition modeling (FDM) has the advantage of being able to process complex workpieces with relatively simple operations. However, when processing complex components in a suspended state, it is necessary to add support parts to be processed and formed, which indicates an excessive dependence on support. The stress intensity of the supported positions of the printing components can be modified by changing the supporting model of the parts, their density, and their distance in relation to the Z direction in the FDM printing settings. The focus of the present work was to study the influences of these three modified factors on the stress intensity of the supporting position of the printing components. In this study, 99 sets of compression tests were carried out using a position of an FDM-supported part, and the experimental results were observed and analyzed with a 3D topographic imager. A reference experiment on the anti-pressure abilities of the printing components without support was also conducted. The experimental results clarify how the above factors can affect the anti-pressure abilities of the supporting positions of the printing components. According to the results, when the supporting density is 30% and the supporting distance in the Z direction is Z = 0.14, the compressive strength of the printing component is lowest. When the supporting density of the printing component is ≤30% and the supporting distance in the Z direction is Z ≥ 0.10, the compressive strength of printing without support is greater than that of the linear support model. Under the same conditions, the grid-support method offers the highest compressive strength.


Buildings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 82
Author(s):  
Salmabanu Luhar ◽  
Demetris Nicolaides ◽  
Ismail Luhar

Even though, an innovative inorganic family of geopolymer concretes are eye-catching potential building materials, it is quite essential to comprehend the fire and thermal resistance of these structural materials at a very high temperature and also when experiencing fire with a view to make certain not only the safety and security of lives and properties but also to establish them as more sustainable edifice materials for future. The experimental and field observations of degree of cracking, spalling and loss of strength within the geopolymer concretes subsequent to exposure at elevated temperature and incidences of occurrences of disastrous fires extend an indication of their resistance against such severely catastrophic conditions. The impact of heat and fire on mechanical attributes viz., mechanical-compressive strength, flexural behavior, elastic modulus; durability—thermal shrinkage; chemical stability; the impact of thermal creep on compressive strength; and microstructure properties—XRD, FTIR, NMR, SEM as well as physico-chemical modifications of geopolymer composites subsequent to their exposures at elevated temperatures is reviewed in depth. The present scientific state-of-the-art review manuscript aimed to assess the fire and thermal resistance of geopolymer concrete along with its thermo-chemistry at a towering temperature in order to introduce this novel, most modern, user and eco-benign construction materials as potentially promising, sustainable, durable, thermal and fire-resistant building materials promoting their optimal and apposite applications for construction and infrastructure industries.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2967
Author(s):  
Rokiah Othman ◽  
Ramadhansyah Putra Jaya ◽  
Khairunisa Muthusamy ◽  
MohdArif Sulaiman ◽  
Youventharan Duraisamy ◽  
...  

This study aims to obtain the relationship between density and compressive strength of foamed concrete. Foamed concrete is a preferred building material due to the low density of its concrete. In foamed concrete, the compressive strength reduces with decreasing density. Generally, a denser foamed concrete produces higher compressive strength and lower volume of voids. In the present study, the tests were carried out in stages in order to investigate the effect of sand–cement ratio, water to cement ratio, foam dosage, and dilution ratio on workability, density, and compressive strength of the control foamed concrete specimen. Next, the test obtained the optimum content of processed spent bleaching earth (PSBE) as partial cement replacement in the foamed concrete. Based on the experimental results, the use of 1:1.5 cement to sand ratio for the mortar mix specified the best performance for density, workability, and 28-day compressive strength. Increasing the sand to cement ratio increased the density and compressive strength of the mortar specimen. In addition, in the production of control foamed concrete, increasing the foam dosage reduced the density and compressive strength of the control specimen. Similarly with the dilution ratio, the compressive strength of the control foamed concrete decreased with an increasing dilution ratio. The employment of PSBE significantly influenced the density and compressive strength of the foamed concrete. An increase in the percentage of PSBE reduced the density of the foamed concrete. The compressive strength of the foamed concrete that incorporated PSBE increased with increasing PSBE content up to 30% PSBE. In conclusion, the compressive strength of foamed concrete depends on its density. It was revealed that the use of 30% PSBE as a replacement for cement meets the desired density of 1600 kg/m3, with stability and consistency in workability, and it increases the compressive strength dramatically from 10 to 23 MPa as compared to the control specimen. Thus, it demonstrated that the positive effect of incorporation of PSBE in foamed concrete is linked to the pozzolanic effect whereby more calcium silicate hydrate (CSH) produces denser foamed concrete, which leads to higher strength, and it is less pore connected. In addition, the regression analysis shows strong correlation between density and compressive strength of the foamed concrete due to the R2 being closer to one. Thus, production of foamed concrete incorporating 30% PSBE might have potential for sustainable building materials.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3177
Author(s):  
Evelio Teijón-López-Zuazo ◽  
Jorge López-Rebollo ◽  
Luis Javier Sánchez-Aparicio ◽  
Roberto Garcia-Martín ◽  
Diego Gonzalez-Aguilera

This work aims to investigate different predictive models for estimating the unconfined compressive strength and the maximum peak strain of non-structural recycled concretes made up by ceramic and concrete wastes. The extensive experimental campaign carried out during this research includes granulometric analysis, physical and chemical analysis, and compression tests along with the use of the 3D digital image correlation as a method to estimate the maximum peak strain. The results obtained show that it is possible to accurately estimate the unconfined compressive strength for both types of concretes, as well as the maximum peak strain of concretes made up by ceramic waste. The peak strain for mixtures with concrete waste shows lower correlation values.


2014 ◽  
Vol 976 ◽  
pp. 202-206 ◽  
Author(s):  
Javier Flores Badillo ◽  
Juan Hernández Ávila ◽  
Francisco Patiño Cardona ◽  
Norma Yacelit Trápala Pineda ◽  
José Abacú Ostos Santos

In this paper we present the production of alternative industrial materials from the mining waste in the form of tailings, this study was made with the tailings of Dos Carlos, establishing 4 sampling zones, dividing them into three strata in the bottom, middle and top. The sampling method used is quartering, to homogenize the material and anticipate the possible use of it as a building material, having for this purpose 12 ceramic mixtures for subsequent treatment. Chemical composition was determined as 70.43% SiO2, 7.032% Al2O3, 2.69% Fe2O3, 0.46% MnO2, 3.98% K2O, 3.34% CaO, 2.50% Na2O, 56 grams per tonne of Ag y 0.6 grams per tonne of Au. In the mineralogical characterization the tailings presents silica, albite, berlinite, orthoclase and potassium jarosite as the main mineral phases, among other mineral phases in lesser concentration such as gypsum, calcite, anorthoclase, pyrite, sphalerite and galena. The determinations of the tailing material granulometry in the range of 60% in a size less than 270 mesh (53 μm). Afterwards, the alternative industrial materials were produced by using the tailings and heavy clay in order to give the composite a good green strength and plasticity during development, but above all to give it a compressive strength similar or higher than that of products derived from conventional processes. Keywords: Tailings, green strength, compressive strength, plasticity, heavy clays, alternative industrial materials.


2009 ◽  
Vol 1242 ◽  
Author(s):  
Rivas-Vázquez L.P. ◽  
Suárez-Orduña R. ◽  
Valera-Zaragoza M. ◽  
Máas-Díaz A. De la L. ◽  
Ramírez-Vargas E.

ABSTRACTThe effects of waste polyethylene aggregate as admixture agent in Portland cement at different addition polyethylene/cement ratios from 0.0156 to 0.3903 were investigated. The reinforced samples were prepared according the ASTM C 150 Standard (samples of 5 × 5 × 5 cm). The reinforcing fibers were milling at a size of 1/25 in diameter, form waste and used them to evaluate the effects in mechanical properties in cement-based composites. The evaluation of polyethylene as additive was based on results of density and compression tests. The 28-day compressive strength of cement reforced with plastic waste at a replacement polyethylene/cement ratio of 0.0468 was 23.5 MPa compared to the control concrete (7.5 MPa). The density of cement replaced with polyethylene varies from 2.114 (0% polyethylene) to 1.83 g/cm3 by the influence of polyethylene.


Sign in / Sign up

Export Citation Format

Share Document