Sulfur-Extended High-Performance Green Paving Materials

2014 ◽  
Vol 1079-1080 ◽  
pp. 58-61 ◽  
Author(s):  
Vitaliy Gladkikh ◽  
Evgenij Valerjevich Korolev ◽  
Olga I. Poddaeva ◽  
Vladimir A. Smirnov

Currently, there is a strong need of high-performance and environment-friendly paving materials in Russian Federation. Sulfur dumps near the oil industry enterprises consumes area which otherwise could be occupied by vegetation, contributing to the improvement of the environmental situation. Incorporation of sulfur in bulk building materials contributes to decrease of load to the environment. The results of numerous studies of sulfur-extended asphalt concretes are summarized in the present work. For the suppression of hydrogen sulfide and sulfur dioxide we propose to use the complex nanoscale modifier. The application of such modifier leads to several positive effects. Both amount of sulfur in constructional mix and mobility of the mix can be increased. The values of operational properties, notably compressive strength and resistance to rutting, can also be increased. Due to consumption of industrial by-product, the environmental load decreases in regions near the oil and gas industry enterprises.

2021 ◽  
Author(s):  
Nouf AlJabri ◽  
Nan Shi

Abstract Nanoemulsions (NEs) are kinetically stable emulsions with droplet size on the order of 100 nm. Many unique properties of NEs, such as stability and rheology, have attracted considerable attention in the oil industry. Here, we review applications and studies of NEs for major upstream operations, highlighting useful properties of NEs, synthesis to render these properties, and techniques to characterize them. We identify specific challenges associated with large-scale applications of NEs and directions for future studies. We first summarize useful and unique properties of NEs, mostly arising from the small droplet size. Then, we compare different methods to prepare NEs based on the magnitude of input energy, i.e., low-energy and high-energy methods. In addition, we review techniques to characterize properties of NEs, such as droplet size, volume fraction of the dispersed phase, and viscosity. Furthermore, we discuss specific applications of NEs in four areas of upstream operations, i.e., enhanced oil recovery, drilling/completion, flow assurance, and stimulation. Finally, we identify challenges to economically tailor NEs with desired properties for large-scale upstream applications and propose possible solutions to some of these challenges. NEs are kinetically stable due to their small droplet size (submicron to 100 nm). Within this size range, the rate of major destabilizing mechanisms, such as coalescence, flocculation, and Ostwald ripening, is considerably slowed down. In addition, small droplet size yields large surface-to-volume ratio, optical transparency, high diffusivity, and controllable rheology. Similar to applications in other fields (food industry, pharmaceuticals, cosmetics, etc.), the oil and gas industry can also benefit from these useful properties of NEs. Proposed functions of NEs include delivering chemicals, conditioning wellbore/reservoir conditions, and improve chemical compatibility. Therefore, we envision NEs as a versatile technology that can be applied in a variety of upstream operations. Upstream operations often target a wide range of physical and chemical conditions and are operated at different time scales. More importantly, these operations typically consume a large amount of materials. These facts not only suggest efforts to rationally engineer properties of NEs in upstream applications, but also manifest the importance to economically optimize such efforts for large-scale operations. We summarize studies and applications of NEs in upstream operations in the oil and gas industry. We review useful properties of NEs that benefit upstream applications as well as techniques to synthesize and characterize NEs. More importantly, we identify challenges and opportunities in engineering NEs for large-scale operations in different upstream applications. This work not only focuses on scientific aspects of synthesizing NEs with desired properties but also emphasizes engineering and economic consideration that is important in the oil industry.


2021 ◽  
Author(s):  
Armstrong Lee Agbaji

Abstract Historically, the oil and gas industry has been slow and extremely cautious to adopt emerging technologies. But in the Age of Artificial Intelligence (AI), the industry has broken from tradition. It has not only embraced AI; it is leading the pack. AI has not only changed what it now means to work in the oil industry, it has changed how companies create, capture, and deliver value. Thanks, or no thanks to automation, traditional oil industry skills and talents are now being threatened, and in most cases, rendered obsolete. Oil and gas industry day-to-day work is progressively gravitating towards software and algorithms, and today’s workers are resigning themselves to the fact that computers and robots will one day "take over" and do much of their work. The adoption of AI and how it might affect career prospects is currently causing a lot of anxiety among industry professionals. This paper details how artificial intelligence, automation, and robotics has redefined what it now means to work in the oil industry, as well as the new challenges and responsibilities that the AI revolution presents. It takes a deep-dive into human-robot interaction, and underscores what AI can, and cannot do. It also identifies several traditional oilfield positions that have become endangered by automation, addresses the premonitions of professionals in these endangered roles, and lays out a roadmap on how to survive and thrive in a digitally transformed world. The future of work is evolving, and new technologies are changing how talent is acquired, developed, and retained. That robots will someday "take our jobs" is not an impossible possibility. It is more of a reality than an exaggeration. Automation in the oil industry has achieved outcomes that go beyond human capabilities. In fact, the odds are overwhelming that AI that functions at a comparable level to humans will soon become ubiquitous in the industry. The big question is: How long will it take? The oil industry of the future will not need large office complexes or a large workforce. Most of the work will be automated. Drilling rigs, production platforms, refineries, and petrochemical plants will not go away, but how work is done at these locations will be totally different. While the industry will never entirely lose its human touch, AI will be the foundation of the workforce of the future. How we react to the AI revolution today will shape the industry for generations to come. What should we do when AI changes our job functions and workforce? Should we be training AI, or should we be training humans?


1986 ◽  
Vol 39 (11) ◽  
pp. 1687-1696 ◽  
Author(s):  
Jean-Claude Roegiers

The petroleum industry offers a broad spectrum of problems that falls within the domain of expertise of mechanical engineers. These problems range from the design of well production equipment to the evaluation of formation responses to production and stimulation. This paper briefly describes various aspects and related difficulties with which the oil industry has to deal, from the time the well is spudded until the field is abandoned. It attempts to delineate the problems, to outline the approaches presently used, and to discuss areas where additional research is needed. Areas of current research activity also are described; whenever appropriate, typical or pertinent case histories are used to illustrate a point.


Author(s):  
Х. Р. Асхабов ◽  
Р. И. Ахъядов ◽  
Ю. Х. Тарамов ◽  
А. А. Эльмурзаев

В современное время нефтегазовая отрасль обладает большим потенциалом для развития экономики, благодаря чему ее регулированию уделяется внимание на международном уровне. К примеру, стоит упомянуть Организацию стран - экспортеров нефти, которая была создана нефтедобывающими странами в целях контроля квот добычи на нефть. Актуальность публикации заключается в том, что на сегодняшний день нефтяная отрасль продолжает оказывать значительное влияние на экономику стран, чье устойчивое развитие определяется успешным развитием нефтяной промышленности. Рассмотреть, проанализировать и обозначить, на наш взгляд, перспективы эффективного развития отраслей нефтяной промышленности Российской Федерации, по сравнению с развитием нефтяной промышленности гигантов данной отрасли - Саудовской Аравии и Соединенных Штатов Америки, явилось целью исследования в данной статье. In modern times, the oil and gas industry has great potential for the development of the economy, due to which its regulation is paid attention at the international level. For example, it is worth mentioning the Organization of Petroleum Exporting Countries, which was established by oil-producing countries to control oil production quotas. The relevance of the publication is that today the oil industry continues to have a significant impact on the economies of countries whose sustainable development is determined by the successful development of the oil industry. To consider, analyse and outline, in our opinion, the prospects for the effective development of the oil industries of the Russian Federation, in comparison with the development of the oil industry of the following giants of this industry of Saudi Arabia and the United States of America, was the purpose of the study in this article.


2015 ◽  
Vol 10 (2) ◽  
pp. 118-131 ◽  
Author(s):  
Kwesi Amponsah-Tawiah ◽  
Kwasi Dartey-Baah ◽  
Kobena Osam

Purpose – This paper aims to examine the potential impact of the presence of oil resource on the Ghanaian society. Specifically, the paper investigates the relationship between key stakeholders in the oil sector, how stakeholder interactions create the potential for collision and advances measures aimed at turning possible collision into cooperation. Design/methodology/approach – The paper uses a literature review-based approach, drawing on existing literature in a number of areas including corporate social responsibility (CSR), oil and gas industry in Ghana and Nigeria as well as communication. Findings – The paper advances that expectations of stakeholders as regards oil being a panacea to all their problems must be managed to avoid possible collision. Additionally, Ghana’s oil industry must identify and engage all stakeholders in planning suitable and sustainable CSR programmes for economic development, thus fostering a friendly environment for oil companies. Transparency and accountability are also needed to promote cooperation rather than collision among stakeholders in Ghana’s oil industry. Originality/value – This paper raises and brings to the fore critical issues that can lead to potential collisions in the oil and gas industry in Ghana if not well-managed, and thus an innovative work in that regard.


2020 ◽  
Vol 17 (1) ◽  
pp. 69-78 ◽  
Author(s):  
L. A. Chaldaeva ◽  
T. I. Chinaeva ◽  
A. S. Bogopolskiy

Purpose of the study. The oil and gas industry occupies an important place in the Russian economy. The financial position of any organization is determined by its financial results, where profit is a key indicator in a market economy and an indicator of the success of the company. The aim of this work is to study the state and development of the oil and gas industry, analysis of the main financial indicators, characterizing the activities of a number of oil producing companies selected in the SPARK database using economic and statistical methods.Materials and methods. The research information base is statistical data and analytical information reflecting the financial component of the oil and gas industry. The research methodological base is represented by economic and statistical methods of information analysis.Results. The analysis of the main trends in the development of trade in the international oil trade is carried out, the key determinants of the modern world oil market are highlighted, the economic situation in the Russian oil industry is analyzed, which showed that there is a decrease in oil production associated with the OPEC + agreements; the share of exports of crude oil increases; the share of exports of refined oil decreases; the government is developing measures to reduce the dependence of budget revenues on the oil and gas industry.The main types of profit, such as gross profit, sales profit, before-tax profit, net profit are considered. It is worth noting that these categories of profit are interconnected, since one category follows from another, depending on the items of income and expense inherent in a particular type of profit. The analysis of a number of indicators, characterizing the financial activities of organizations of the oil and gas complex was carried out, the totality of oil producing organizations based on the SPARK database was selected, and a comparative analysis of the financial activities of two organizations of the oil and gas complex was carried out.Conclusion. The oil and gas industry is a key sector of the economy, making a significant contribution to the social and economic development of our country. Revenues from the activities of the oil and gas complex make a significant contribution to the country’s GDP and are a significant component of the budget.In this paper, an analysis of a number of financial and economic indicators, characterizing the activities of organizations of the oil and gas complex was carried out. The financial condition of the organization is largely determined by its financial results – profit or loss. The main indicators of the financial results of the organization are profit and profitability, which depend on many internal and external factors. Including, industry features have a great influence. A set of oil-producing organizations based on the SPARK database was selected in the work. By the example of organizations JSC “IDELOIL” and Ltd “NEDRA-K”, a comparative analysis of financial and economic indicators was carried out, directions for increasing gross profit and gross margin indicators were proposed and justified in order to reduce costs and increase revenues.As a result, it was concluded that the oil industry in Russia depends on political and economic factors, in this regard, it is necessary to regularly analyze the activities of organizations in this industry to identify miscalculations, low-active functioning systems, etc., with the purpose of more efficient functioning of the industry.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3082
Author(s):  
Anna Król ◽  
Monika Gajec ◽  
Ewa Kukulska-Zając

In the oil and gas industry, tracers are used to estimate residual oil saturation, to indicate the location and orientation of fractures in tight reservoirs, to identify and mark the direction of fluid flow in fractured deposits, to locate faults and discontinuities, and to measure fluid movement in injection wells during drilling. The tracers should behave in a mechanically similar manner to the tested substance, e.g., formation waters, oil or gas, and, on the other hand, they should significantly differ from them in terms of chemical properties so that it is possible to identify them. One of the fluorescent tracers used in the oil and gas industry, e.g., for inter-well tests during secondary or tertiary production methods (especially during reservoir hydration), is uranine. In order to assess the effectiveness of fluid movement measurements, it is necessary to determine the uranine content in formation waters. In this study, a method was developed to determine uranine in formation water samples using high-performance liquid chromatography with fluorescence detection (HPLC/FLD). The initial step in preparing samples for chromatographic analysis would be solid phase extraction (SPE). The method was validated and allows for the determination of uranine in formation water samples in the concentration range from 0.030 to 2.80 µg/L. The validation of the method included the analysis of factors influencing the measurement result (sources of uncertainty), determination of the linearity range of the standard curve, determination of the quantification limit of the method, and verification of the reproducibility, selectivity, stability and correctness achieved. The method developed within the study can be successfully applied in the case of the determination of uranine content in formation water samples from the oil and gas mining industry, which are often unstable and characterized by a relatively complex matrix. After validation, the method will also be applicable to the determination of uranine in matrices with a similar physicochemical composition, e.g., to assess groundwater flow in deformed carbonate aquifers or to characterize faults that act as barriers to horizontal groundwater flow.


Author(s):  
N. Baykov

The fresh forecasts on the probable state of world oil and gas industry up to 2035 have appeared in late 2011. The article deals with the main points and conclusions of the available forecasts of the International Energy Agency and the U.S. Department of Energy, especially concerning supposed indicators of output and consumption of primary energy resources, primarily crude oil, in the whole world and with breakdown by regions.


Author(s):  
Ramiz M. Aliguliyev ◽  
Rashid G. Alakbarov ◽  
Shalala F. Tahirzada

The application of the fast-growing information and communications technologies (ICT) in the industry has led to an increase in the quality of industrial processes. Through the application of Internet of Things (IoT) considered as a new technological concept in the oil and gas industry, it is possible to provide a high level of security by detecting previously the errors, the faults in real-time, to minimize the costs of production processes such as exploration, search, monitoring in the oil industry, to achieve the optimization of the activity to ensure highly productive performance. The application of IoT in the industry can lead to collect an exponential volume of data and, consequently, to some challenges in the analysis phase. Taking these into account, the article deals with the research on IoT technologies and the application of industrial processes to improve the quality of production processes in the oil and gas industry. In this paper, multi-layered analysis architecture for processing big data in the oil & gas industry is proposed.


Sign in / Sign up

Export Citation Format

Share Document