Linseed Oil and Xanthan Gum: Promising Stabilisers for Earthen Building Materials

Author(s):  
Simon Guihéneuf ◽  
Arnaud Perrot ◽  
Damien Rangeard

In the current context, the development of new bio-based and local building materials is becoming mandatory. Among them, earthen materials have a strong potential to be used as sustainable structural materials but their variability and their water sensitivity impact their mechanical properties that are difficult to guaranty. Recent developments have emphasised the ability of some bio-based additions to help to ensure these properties: linseed oil and xanthan gum are part of them. In this paper three different Breton earths, representative of a certain local variability, are studied. The impact of the selected bio-based additions on earths’ rheological behaviour is followed in order to adapt it to different forming processes. Then, the mechanical properties of different earth-addition combinations at the dry state, exposed to hygric variations and immersion are investigated for different forming processes. The findings highlight the fact that xanthan gum and linseed oil have a relevant ability to stabilise earthen blocks, that can be processed using different promising forming methods.

Author(s):  
Simon Guihéneuf ◽  
Arnaud Perrot ◽  
Damien Rangeard ◽  
Mathilde Cocheteux

Currently, much consideration is given to earthen building materials regarding their highly sustainable properties. Numerous studies have highlighted their structural ability but their water sensitivity is still limiting a potentially more spread use. To limit this sensitivity several studies have recently brought out the positive effects of bio-stabilisers such as linseed oil or xanthan gum. These recent developments allow bio-stabilized earthen materials to be resistant to immersion in water. Also, a French experimental standard (XP P 13-901) for compressed earth blocks already asks for a minimal compressive strength after a two-hour immersion that is overly severe and is difficult to satisfy without the addition of high contents of hydraulic binders. In this paper, a critical study of this compressive test after immersion is conducted on bio-stabilized (linseed oil and xanthan gum) samples of different Breton earths. Some testing adjustments are suggested and the water-diffusion in the samples is followed and linked to previously obtained capillary absorption coefficients. It is shown that the effect of immersion on the mechanical strength depends on the sample size and that an equivalence between size and immersion time can be made based on an equivalent penetration depth. Linseed oil and xanthan gum help to significantly increase the compressive strength of the earthen materials after immersion and allow to avoid the addition of hydraulic binders in earthen blocks to obtained a strong water resistance. The water diffusion in the sample during the immersion can be linked to capillary absorption behaviour, thus a water content and a compressive strength after a given time of immersion could be easily predicted.


Author(s):  
Mathieu Audren ◽  
Simon Guihéneuf ◽  
Damien Rangeard ◽  
Arnaud Perrot

Development of earthen building materials is one of the answers that the construction sector can provide to tackle the accelerated climate change issue. However, these materials present a wide variability, even at the local scale, and their water durability can be difficult to ensure. In order to improve their durability regarding water and avoid its prejudicial effect on earthen material’s properties, the stabilisation with bio-polymers is an increasingly studied solution. In this paper a ten-minute erosion drip test is developed and performed for various combinations of Breton earths and bio-based additions or surface treatments (linseed oil, xanthan gum, casein, alginate, vegetal varnish and tannins). The final pitting depths and eroded volumes are compared and the evolution of erosion during the test is monitored. These results are also linked to previously obtained water capillary absorption coefficients. The obtained results enable to highlight the impact of bio-based additions on erodibility of earthen materials: linseed oil and xanthan gum help to protect the earth-based samples from erosion. Other original parameters characterizing the erosion of the samples during the drip test are suggested. Limitations of this type of erosion tests are also brought out.


2016 ◽  
Vol 852 ◽  
pp. 663-669
Author(s):  
Yu Liang Wu ◽  
Xiao Bo Zhang ◽  
Yi Ge

This paper adopted the mixing modification to prepare MAH-POE/ LMW-EP/PP/CaCO3 thermoplastic composites, probed into the structure of composites, the system compared the modification made by composites and the single system of the rheological property, the influence law of flow rate, mechanical properties, dynamic mechanical thermal analysis (DMTA) and the network structure of the composite material etc. The results showed that the elastomer was preferably dispersed in the PP, the two phases have a strong interaction force, When the content reaches 20%, the tensile strength decreased by 7.37%, the elongation at break increased by 410.1%, the impact strength reached 546.3J.m2, there has been broad and strong low internal friction peak tanδ2 peak, and with the increase of elastomer content, liquidity blends decreases, MFR decreases. In short, quadruple composites have optimum overall performance. Polypropylene (PP) is a source of abundant, excellent mechanical properties, good electrical insulation, and resistance to stress cracking and has good overall performance excellent chemical stability thermoplastics. Widely used in medical equipment, auto parts , building materials, home office supplies, as well as a large number of transport and packaging materials [1-3] . However, due to the strong ability of PP crystallization, resulting PP mold shrinkage, impact toughness is poor [4-5] , in order to solve this problem , the current modification methods often used are: copolymerization and blending modification , and blending is the most simple and effective toughening PP method . The main focus ① blended with a modified rubber or thermoplastic elastomer blends toughening ; ② Toughening with other organic polymers ; ③ rigid inorganic particle toughening ; ④ elastomer / toughening common inorganic particles [6-10] . POE because both thermoplastic plastics , but also the crosslinkable rubber , which has a small cohesive energy , high shear sensitivity , and good compatibility with PP machining , toughening modification of PP the effect is significant and widespread attention , but the larger POE elastomer modified PP viscosity , processing performance be affected [11-13] . In this paper, LMW-EP and MAH-POE-modified PP, while adding CaCO3 prepared by a four-element composite elastomer material, by contrast, explores the compatibility of the quaternary blends, processing fluidity and mechanical properties


2013 ◽  
Vol 684 ◽  
pp. 106-110 ◽  
Author(s):  
Galina G. Kashevarova ◽  
Anna S. Martirosyan

The random character of mechanical properties of building materials reveals itself when construction structures are tested even though all prescribed technological standards and requirements are met. The paper presents software implementation of the algorithm the statistical straggling of the mechanical properties of materials in the design of structures. This algorithm is built into the software AnSysBuildingBlock (ASBB), developed by us, whose interface is presented here, and which can automatically generate the code for the settlement complex ANSYS. Consider an example in which the impact of scattering mortar mechanical properties on the stress-strained state of brick masonry and its structural destruction was investigated.


2020 ◽  
Vol 975 ◽  
pp. 147-152
Author(s):  
Marcel Jogl ◽  
Pavel Reiterman

The paper presents the impact of doses of an air-entraining additive on the mechanical properties of a composite based on aluminous cement. The presented data have been selected from the authors’ most recent research, which supports an economic development of a lightweight composite with the ability to withstand elevated temperatures of up to 1000 °C. The interest in the behaviour of concrete at high temperatures mainly results from the many cases of fires taking place in buildings, high-rises, tunnels, and drilling platform structures. Operation at high temperatures is also of fundamental importance to many major sectors of industry, including material production and processing, chemical engineering, power generation and more. Concrete has a great intrinsic behaviour when exposed to fire, especially when compared to other building materials. However, its fire resistance should not be taken for granted and proper structural fire protection is certainly necessary, e.g. in the form of high-temperature barriers. For the purposes of this experiment, the specimens were composed of cement paste and an air-entraining additive dosage between 2 – 10 % by weight of the cement dose. The properties of investigated specimens, dried at a temperature of 105 °C, were compared with each other. Values of compressive strength, flexural strength, and bulk density are measured in this work. The purpose was to evaluate the effects of the air-entraining agent on the workability of a fresh mixture, its bulk density, and mechanical properties after drying. In the case of a mixture with added short basalt fibres, the effects after high thermal loading were also evaluated. The proposed composites with air-entraining additive over 8 % shown the values of bulk density below 1800 kg/m3, along with the satisfactory strength results.


2020 ◽  
Vol 12 (19) ◽  
pp. 8216
Author(s):  
Laura Vitola ◽  
Ina Pundiene ◽  
Jolanta Pranckeviciene ◽  
Diana Bajare

This study aimed to determine the impact of the initial temperature of the paste (from 5 °C to 35 °C) and the addition of water, which reflects a decrease in the molarity of activation solutions (AS) by diluting 10 M NaOH with distillate water, on the rheological properties of geopolymer pastes. Additionally, this resulted in changes to the physical–mechanical properties of geopolymers after curing. A higher amount of water in the AS composition and higher initial paste temperature led to an increase in the spread values up to 28% and decreases viscosity. A smaller amount of water in the AS composition and a higher initial paste temperature accelerated the speed of the geopolymer structure formation up to 1.5 times during the curing period, increased compressive strength and reduced apparent porosity and pore size. X-ray diffraction confirmed the compressive strength test results and revealed that the lower amount of water in the AS and the higher initial paste temperature for the geopolymer preparation significantly affected the mineral formation and physical and mechanical properties of the samples.


Author(s):  
I.V. Barabash ◽  
◽  
A.I. Vorokhaiev ◽  
L.M. Ksonshkevуch ◽  
◽  
...  

Abstract. The materials of the proposed article are devoted to the study of mechanical properties of sand concrete with the addition of hydrophobized basalt fiber and polycarboxylate superplasticizer Relaxol-Super PC. Adding hydrophobic properties to the basalt fiber causes a decrease of water consumption of fine-grained concrete mixture, which leads to improved mechanical properties of concrete. The aim of the work was to increase the mechanical characteristics of sand concrete by introducing hydrophobized basalt fiber into its composition. The objective of the research is to study the effect of hydrophobized basalt fiber on the mechanical characteristics of sand concrete. The polycarboxylate superplasticizer Relaxol-Super PC (Budindustriya, Zaporozhye) was used to increase the mobility of the concrete mixture. Basalt fiber Bauson-basalt 12 mm long and 18 ± 2μm in diameter was used as a fibrous filler. Sand concrete mixture was prepared in a laboratory forced-action mixer. Dosing of Portland cement, quartz sand and basalt fiber was carried out by weight, water and water-reducing additive ‒ by volume, taking into account the density of the additive. The fiber was introduced into a dry cement-sand mixture. After mixing for 120 ... 150 seconds, water with a dosed amount of additive was introduced into the mixture. The hardening of samples concrete took place under normal conditions in a chamber with a temperature of 20 ± 20C and a relative humidity of at least 95%. The compressive strength of concrete was determined by testing the halves of the samples – beams 4×4×16 cm in size at 28 days of age. The abrasion of the investigated concrete was determined by testing cube specimens with an edge of 7.07 cm on an LKI-3 device in accordance with the procedure set forth in DSTU B.V.2.7-212: 2009 “Building materials. Concrete. Methods for determining abrasion “. The impact resistance of concrete was determined from the results of testing cubic specimens with an edge of 7.07 cm on a vertical dynamic laboratory test machine. Especially effective is manifested positive role hydrophobization basalt fiber in combination with the water-reducing additive Relaxol-Super PC. The introduction of hydrophobic fiber (2 kg/m3) and Relaxol – Super PC (1.2% by weight of cement) into the sand concrete mix provides an increase in the strength of sand concrete by 45 ... 48%, impact resistance by 45 ... 50%. The abrasion of concrete is reduced by 36 ... 48% compared to the control.


2020 ◽  
Vol 14 (2) ◽  
pp. 6734-6742
Author(s):  
A. Syamsir ◽  
S. M. Mubin ◽  
N. M. Nor ◽  
V. Anggraini ◽  
S. Nagappan ◽  
...  

This study investigated the combine effect of 0.2 % drink cans and steel fibers with volume fractions of 0%, 0.5%, 1%, 1.5%, 2%, 2.5% and 3% to the mechanical properties and impact resistance of concrete. Hooked-end steel fiber with 30 mm and 0.75 mm length and diameter, respectively was selected for this study.  The drinks cans fiber were twisted manually in order to increase friction between fiber and concrete. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the strength performance of concrete, especially the compressive strength, flexural strength and indirect tensile strength. The results of the experiment showed that the combination of steel fibers and drink cans fibers improved the compressive strength, flexural strength and indirect tensile strength by 2.3, 7, and 2 times as compare to batch 1, respectively. Moreover, the impact resistance of fiber reinforced concrete has increase by 7 times as compared to non-fiber concretes. Moreover, the impact resistance of fiber reinforced concrete consistently gave better results as compared to non-fiber concretes. The fiber reinforced concrete turned more ductile as the dosage of fibers was increased and ductility started to decrease slightly after optimum fiber dosage was reached. It was found that concrete with combination of 2% steel and 0.2% drink cans fibers showed the highest compressive, split tensile, flexural as well as impact strength.    


Sign in / Sign up

Export Citation Format

Share Document