Micro Arc Oxidation of AZ91 Magnesium Alloy – Effect of Organic Compounds in the Electrolyte

2014 ◽  
Vol 353 ◽  
pp. 217-222 ◽  
Author(s):  
Namik Kemal Gozuacik ◽  
Mert Altay ◽  
Murat Baydogan

AZ91 Mg alloy was micro arc oxidized under constant electrical parameters in silicate based and phosphate based electrolytes with and without addition of organic chemicals, namely Hexamethylenetetramine (HMTA), TRIS (hydroxymethyl) aminomethane (THAM) and Glycerol in two different concentrations. Following oxidation, samples were characterized by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), coating thickness measurements, hardness measurements and electrochemical corrosion tests. Results showed that coating layers mainly consisted of MgO, Mg2SiO4 and MgF2 for silicate based electrolytes, and MgO for phosphate based electrolytes. Incorporation of organic chemicals into electrolyte composition did not change the type of the phases in the coating. However, when they are added in silicate based electrolytes, pore density and coating thickness are reduced and pore size is increased. On the other hand, there is no significant change in surface morphology when organic chemicals are added in phosphate based electrolyte. In the view point of corrosion resistance, organic chemicals did not enhance corrosion resistance of the samples oxidized in silicate based electrolytes, but exhibited some increment in corrosion resistance of the samples oxidized in phosphate based electrolytes.

2017 ◽  
Vol 898 ◽  
pp. 1369-1380 ◽  
Author(s):  
Hui Min Han ◽  
Dan Tong Wang ◽  
Hua Qian Yu ◽  
Min Zuo ◽  
Li Hong Wang ◽  
...  

The ceria coatings on AZ91 substrates were successfully synthesized by chemical conversion and the corrosion resistance of AZ91 samples with and without ceria coatings were evaluated by means of electrochemical corrosion in 3.5 wt.% NaCl solution. According to the parameters derived from the polarization date, the Icorr (the corrosion current density) values of the coated samples are smaller than that of bare one, indicating that the corrosion resistance of AZ91 alloys has been improved to some extent. The influence of fluoridated pretreatment, inter-layer heat treatment, sintering temperature and the layer of films on the performance of ceria coatings were also investigated. It was found that the inter-layer heat treatment has no influence on improving the anticorrosion resistance of AZ91 alloy. In comparison with the bare one, the Icorr of optimal sample is about 0.0219mA/cm2, which decreases by two orders of magnitude, indicating that the ceria coatings could significantly improve the corrosion resistance of AZ91 magnesium alloy.


2007 ◽  
Vol 353-358 ◽  
pp. 1733-1736 ◽  
Author(s):  
Fei Chen ◽  
Hai Zhou ◽  
Chen Chen ◽  
Fan Xiu Lu ◽  
Fan Xiu Lu

Oxidation ceramic coating was directly synthesized on LY12 aluminium alloy by micro-arc oxidation (MAO) process in Na2SiO3 electrolyte solution with the Na2WO4-KOH-Na2EDTA addition. The corrosion resistance of the coating was tested using CS300P electrochemical corrosion workshop in 3.5% NaCl solution. Using the scanning electron microscopy (SEM) and X-ray diffraction (XRD), the cross-section microstructure, the surface morphology and the phase structure of the micro-arc oxidation ceramic coating were analyzed. The results showed that the corrosion resistance of the micro-arc oxidation ceramic coating in 3.5% NaCl solution was enhanced remarkably, the corrosion velocity was obviously slowed down. The thickness of micro-arc oxidation ceramic coating was about 11μm. The final phases in the coating were found to be α-Al2O3 and γ-Al2O3. The mechanism of the oxidation ceramic coating formation was investigated too.


2013 ◽  
Vol 765 ◽  
pp. 639-643 ◽  
Author(s):  
Pei Hu Gao ◽  
Jian Ping Li ◽  
Zhong Yang ◽  
Yong Chun Guo ◽  
Yan Rong Wang

In this study, Al-12Si alloy coatings with different thickness were prepared through flame spray on the surface of the AZ91 magnesium alloy to improve its corrosion resistance. The corrosion resistance was characterized through corrosion potential using electrochemical methods. The Al-12Si alloy coatings were heat treated at 100 °C, 200 °C and 300 °C for 6, 12, 18 and 24 hours. The effects of heat treatment temperature and time on the coatings’ corrosion resistance were discussed. It was found that there were no phase changes during the deposition of Al-12Si coatings through flame spray and heat treatment. The greater the coating thickness was, the higher the corrosion potential was. After annealing, the inner microstructure of the Al-12Si coating was densified furtherly and the annealed coatings had higher corrosion potential and better corrosion resistance. The coating annealed at 100 °C for 18 hours had the highest corrosion potential and the best corrosion resistance in the same coating thickness.


2020 ◽  
Vol 1003 ◽  
pp. 67-75
Author(s):  
Xian Ming Chen ◽  
Ying Ying Fan

In aluminate alkaline electrolyte the effect of aluminate on the microstructure and properties and the MAO(micro-arc oxidation) behavior of micro-arc oxide film of AZ91 magnesium alloy was studied. Transmission electron microscope(TEM), energy dispersive spectrum (EDS), X-ray diffraction(XRD), salt spray test and scanning electron microscope(SEM)were used to analyze and characterize the structure and properties of the film. The results show that the concentration of aluminate has an important effect on the tank voltage, corrosion resistance, surface morphology and phase structure of micro-arc oxidation film. The corrosion resistance and film quality of the film were increased first and then decreased, but the surface roughness decreased first and then increased with the increase of aluminate concentration from 5g/L to 30g/L. At our work, the concentration of 10g/L aluminate electrolyte is most favorable to the formation of micro-arc oxide film.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 447
Author(s):  
Martin Buchtík ◽  
Leoš Doskočil ◽  
Roman Brescher ◽  
Pavel Doležal ◽  
Jiří Másilko ◽  
...  

This paper deals with the study of the crystallization and phase transformation of Ni-P coatings deposited on AZ91 magnesium alloy. Prepared samples were characterized in terms of surface morphology and elemental composition by means of scanning electron microscopy with energy-dispersive spectroscopy analysis. The results of X-ray diffraction analysis and differential scanning calorimetry suggested that increasing the phosphorus content caused Ni-P coatings to develop an amorphous character. The crystallization of Ni was observed at 150, 250, and 300 °C for low-, medium- and high-phosphorus coatings, respectively. The Ni crystallite size increased with increasing temperature and decreasing P content. Conversely, the presence of the Ni3P phase was observed at a maximum peak of 320 °C for the high-phosphorus coating, whereas the crystallization of the Ni3P phase shifted to higher temperatures with decreasing P content. The Ni3P crystallite size increased with increasing temperature and increasing P content. An increase in microhardness due to the arrangement of Ni atoms and Ni3P precipitation was observed. The deposition of as-deposited Ni-P coatings led to an improvement in the corrosion resistance of AZ91. However, the heat treatment of coatings resulted in a deterioration in corrosion properties due to the formation of microcracks.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 789 ◽  
Author(s):  
Farzad Soleymani ◽  
Rahmatollah Emadi ◽  
Sorour Sadeghzade ◽  
Fariborz Tavangarian

Magnesium alloys have received a great amount of attention regarding being used in biomedical applications; however, they show high degradability, poor bioactivity, and biocompatibility. To improve these properties, surface modification and various types of coatings have been applied. In this study, an anodized AZ91 alloy was coated with a polymer matrix composite made of polycaprolactone/chitosan (PCL/Ch) with different percentages of baghdadite to improve its resistance to corrosion, bioactivity, and biocompatibility. The effects of different percentages of baghdadite (0 wt %, 1 wt %, 3 wt %, and 5 wt %) on the surface microstructure, corrosion resistance, roughness, and wettability were evaluated. The results indicated that the applied nano-polymer-ceramic coating including 3 wt % baghdadite was hydrophobic, which consequently increased the corrosion resistance and decreased the corrosion current density of the anodized AZ91 alloy. Coating with 3 wt % baghdadite increased the roughness of AZ91 from 0.329 ± 0.02 to 7.026 ± 0.31 μm. After applying the polymer-ceramic coating on the surface of anodized AZ91, the corrosion products changed into calcium–phosphate compounds instead of Mg(OH)2, which is more stable in a physiological environment.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 901
Author(s):  
Shitian Su ◽  
Jixue Zhou ◽  
Shouqiu Tang ◽  
Huan Yu ◽  
Qian Su ◽  
...  

The development of a magnesium matrix composite with a high content of dispersions using conventional liquid-phase process is a great challenge, especially for nanometer/submicron particles. In this work, mechanical milling was employed to prepare nanocrystalline AZ91 dispersed with 15 vol.% submicron SiC particles (SiCp/AZ91). AZ91 with no SiCp was applied as a comparative study with the same mechanical milling. In order to investigate the mechanism of dispersing, the morphology evolution of powders and the corresponding SiCp distribution were observed. As the scanning electron microscope (SEM) analysis exhibited, the addition of SiCp accelerated the smashing of AZ91 particles, which promoted the dispersion of SiCp in AZ91. Thus, after mechanical milling, 15 vol.% SiCp, which was smashed from 800 to 255 nm, got uniformly distributed in the Mg matrix. Based on X-ray diffraction (XRD) results, part of the Mg17Al12 precipitate got dissolved, and an Al-supersaturated Mg solid solution was formed. The transmission electron microscopy (TEM) results showed that the ultimate Mg grain (32 nm) of milled SiCp/AZ91 was much smaller than that of milled AZ91 (64 nm), which can be attributed to a pinning effect of submicron SiCp. After mechanical milling, the hardness of SiCp/AZ91 reached 185 HV, which was 185% higher than the original AZ91 and 33% higher than milled AZ91, due to fine Mg grain and submicron dispersions.


2020 ◽  
Vol 67 (2) ◽  
pp. 150-157
Author(s):  
Kong Dejun ◽  
Li Jiahong

Purpose The purpose of this paper is to evaluate the salt spray corrosion (SSC) and electrochemical corrosion performances of CrNi, TiAlN/NiCr and CrNi–Al2O3–TiO2 coatings on H13 steel, which improved the corrosion resistance of H13 hot work mold. Design/methodology/approach CrNi, TiAlN/NiCr and CrNi–Al2O3–TiO2 coatings were fabricated on H13 hot work mold steel using a laser cladding and cathodic arc ion plating. The SSC and electrochemical performances of obtained coatings were investigated using a corrosion test chamber and electrochemical workstation, respectively. The corrosion morphologies, microstructure and phases were analyzed using an electron scanning microscope, optical microscope and X-ray diffraction, respectively, and the mechanisms of corrosion resistance were also discussed. Findings The CrNi coating is penetrated by corrosion media, producing the oxide of Fe3O4 on the coating surface; and the TiAlN coating is corroded to enter into the CrNi coating, forming the oxides of TiO and NiO, the mechanism is pitting corrosion, whereas the CrNi–Al2O3–TiO2 coating is not penetrated, with no oxides, showing the highest SSC resistance among the three kinds of coatings. The corrosion potential of CrNi coating, TiAlN/CrNi and CrNi–Al2O3–TiO2 coatings was –0.444, –0.481 and –0.334 V, respectively, and the corresponding polarization resistances were 3,074, 2,425 and 86,648 cm2, respectively. The electrochemical corrosion resistance of CrNi–Al2O3–TiO2 coating is the highest, which is enhanced by the additions of Al2O3 and TiO2. Originality/value The CrNi, TiAlN/CrNi and CrNi–Al2O3–TiO2 coatings on H13 hot work mold were firstly evaluated by the SSC and electrochemical performances.


2011 ◽  
Vol 194-196 ◽  
pp. 1221-1224 ◽  
Author(s):  
Zhong Jun Wang ◽  
Yang Xu ◽  
Jing Zhu

The microstructures and corrosion resistance of AZ91 and AZ91+0.5 wt.% erbium (Er) magnesium alloys were studied, respectively. The results show that the Er addition in scrap AZ91 magnesium alloy can improve the corrosion resistance, markedly. The discontinuous precipitation phase (DPP) for Mg17Al12was retarded and the amount of DPP was decreased by 41% due to the formation of Al8ErMn4phase during solidification. The amount of continuous precipitation phase (CPP) in grains was decreased by 8% because of the formation of Al7ErMn5phase during solidification.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 966
Author(s):  
Mieczyslaw Scendo ◽  
Slawomir Spadlo ◽  
Katarzyna Staszewska-Samson ◽  
Piotr Mlynarczyk

Influence of heat treatment on the corrosion resistance of the aluminum-copper (Al-Cu) coating on the aluminum substrate was investigated. The coating was produced by the electrical discharge alloying (EDA) method. The surface and microstructure of the specimens were observed by a scanning electron microscope (SEM). The phase analysis of the composite materials by X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) indicated that intermetallic compounds (i.e., CuAl2 and Cu9Al4) were formed through reactions between Al and Cu. during the EDA process. A significant increase in the hardness of the Al-Cu coating was affected by the improvement of the alloy structure. The heat treatment of materials was carried out at 400 °C or 600 °C in the air atmosphere. A corrosion test of materials was carried out by using electrochemical methods. The corrosive environment was acidic chloride solution. After heat treatment at 400 °C the mechanical properties of the Al/Cu alloy increased significantly and the oxide layer protect of the alloy surface against corrosion. However, after heat treatment at elevated temperature, i.e., 600 °C it was found that the (Al2O3)ads and (CuO)ads coatings were destroyed. The mechanical properties of the Al/Cu alloy decreased, and its surface has undergone deep electrochemical corrosion.


Sign in / Sign up

Export Citation Format

Share Document