Numerical Study of Phase Change of PCM in Spherical Cavities

2017 ◽  
Vol 372 ◽  
pp. 21-30 ◽  
Author(s):  
Fábio Faistauer ◽  
Petros Rodrigues ◽  
Rejane de Césaro Oliveski

This work presents a numerical study of the phase change process of PCM (Phase Change Materials) stored in spherical cavities. The numerical model is two-dimensional and it is composed by the equations of conservation of mass, momentum, energy and volumetric fraction, which are modeled using the enthalpy-porosity technique. The computational mesh is tetrahedral, with refinements on regions that have large thermic and fluid dynamic gradients. The numeric model was validated with result from literature. It was studied the melting process of PCM RT35, RT 55 and RT 82 in spherical cavity with constant wall temperature. Four diameters of spheres D were used (40, 60, 80 and 100 mm) and three temperature differences ΔT (10, 20 and 30 oC) between the wall temperature and the melting temperature of the PCM. Liquid fraction results from the 36 cases studied are presented. It was observed that the time required to reach a certain liquid fraction increases with the diameter and reduces with the increment of ΔT, being possible to predict the fusion time by knowing the characteristic length of the sphere. The largest percentage reduction of the fusion time was obtained with ΔT = 10 oC – 20 oC for all the D considered. The shortest fusion time was obtained with the largest ΔT combined with the smallest D. It is possible to see the dependence of the liquid fraction results in relation with the PCM properties and the its independence in relation its melting temperature, since all the PCM studied presented equal fusion time for the same ΔT and D.

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3286 ◽  
Author(s):  
Tenpierik ◽  
Wattez ◽  
Turrin ◽  
Cosmatu ◽  
Tsafou

Phase change materials (PCMs) are materials that can store large amounts of heat during their phase transition from solid to liquid without a significant increase in temperature. While going from liquid to solid this heat is again released. As such, these materials can play an important role in future energy-efficient buildings. If applied in facades as part of a thermal buffer strategy, e.g., capturing and temporarily storing solar energy in so-called Trombe walls, the PCMs are exposed to high solar radiation intensities, which may easily lead to issues of overheating. This paper therefore investigates the melting process of PCM and arrives at potential solutions for countering this overheating phenomenon. This study uses the simulation program Comsol to investigate the heat transfer through, melting of and fluid flow inside a block of PCM (3 × 20 cm2) with a melting temperature of around 25 °C. The density, specific heat and dynamic viscosity of the PCM are modeled as a temperature dependent variable. The latent heat of the PCM is modeled as part of the specific heat. One side of the block of PCM is exposed to a heat flux of 300 W/m2. The simulations show that once part of the PCM has melted convection arises transporting heat from the bottom of the block to its top. As a result, the top heats up faster than the bottom speeding up the melting process there. Furthermore, in high columns of PCM a large temperature gradient may arise due to this phenomenon. Segmenting a large volume of PCM into smaller volumes in height limits this convection thereby reducing the temperature gradient along the height of the block. Moreover, using PCMs with different melting temperature along the height of a block of PCM allows for controlling the speed with which a certain part of the PCM block starts melting. Segmenting the block of PCM using PCMs with different melting temperature along its height was found to give the most promising results for minimizing this overheating effect. Selecting the optimal phase change temperatures however is critical in that case.


Author(s):  
Yasmin Khakpour ◽  
Jamal Seyed-Yagoobi

This paper numerically investigates the flow and heat transfer characteristics of a slurry of micro encapsulated phase change materials (MEPCM) and R134a in the presence of film evaporation. The numerical domain is comprised of a minichannel in contact with a finite thickness solid zone with constant wall temperature. During the evaporation process, the concentration of MEPCM in the slurry increases, resulting in a continuous variation of effective thermal properties of the slurry. The effect of PCM concentration on the evolution of the liquid film thickness under different operating conditions along with the variation of the local heat transfer coefficients has been studied. A user defined function has been developed to incorporate the evaporation process by introducing the mass and energy source terms for the evaporation process as well as the variation of the MEPCM concentration along the channel.


Author(s):  
Li-Wu Fan ◽  
Liang Zhang ◽  
Zi-Tao Yu ◽  
Xu Xu ◽  
Ya-Cai Hu ◽  
...  

A numerical study of constrained melting of nanostructure-enhanced phase change materials (NEPCM) consisting of eicosane and various loadings of CNTs in a rectangular cavity heated from below was performed. Assuming that the NEPCM are single-phase PCMs with homogeneous thermophysical properties, the problem was solved using a finite volume method based on the enthalpy-porosity scheme for solid-liquid phase change. The effective thermophysical properties of NEPCM were predicted using the mixture models and empirical equation with respect to the loading of CNTs. Three nominal Grashof numbers corresponding to three sizes of the cavity were considered. Evolutions of the constrained melting processes were presented by means of snapshots of the temperature contour at representative time instants. The melting rates and local heat transfer along the heated bottom were compared quantitatively based on the variations of the instantaneous liquid fraction and average Nusselt number over the bottom during melting, respectively. It was shown that at a given size of the cavity, melting was expedited as more CNTs were introduced. The expediting of melting was mainly attributed to the enhanced thermal conductivity and lowering of latent heat of fusion of NEPCM. The inclusion of CNTs, however, increases considerably the viscosity of melted NEPCM, which in turn leads to less significant natural convection effect during melting. As a result, increase of loading of CNTs was shown to lead to two competing effects. The feasibility of NEPCM in melting is justified when the enhanced heat conduction overweighs the suppressed natural convection.


2019 ◽  
Vol 112 ◽  
pp. 01010
Author(s):  
Dorin Stanciu ◽  
Camelia Stanciu ◽  
Valentin Apostol ◽  
Horatiu Pop

Storage processes are usually integrated in solar energy systems applications due to daily variation of this energy source availability. Among different thermal storage solutions, phase change materials (PCM) lately became more extensively used covering a wide range of operating temperatures. In this regard, a numerical simulation of a PCM melting process is performed under ANSYS CFD environment. A particular configuration is considered consisting in a 2m length annular tube having a 5.48 cm external diameter. The tube is filled with paraffin chosen as PCM. A concentric interior tube of 2.54 cm diameter is used for transporting the heat transfer fluid (HTF) from the solar collector. Heat is transferred through the 1 mm thick pipe wall to the PCM placed all around the HTF tube. The numerical results reveal the melting process of the PCM at different instances and tube sections. The time variation of the PCM liquid fraction is emphasized. The results describe the dynamic behavior of a PCM melting process and might be further integrated in any solar power plant storage charging process simulation.


2021 ◽  
Vol 2054 (1) ◽  
pp. 012051
Author(s):  
B Charles Divyateja ◽  
K S Unnikrishnan ◽  
B Rohinikumar

Abstract Phase change materials (PCMs) can effectively cool photovoltaic (PV) panels by the passive cooling technique, thereby enhancing its direct energy conversion efficiency. However, generally, PCMs have low thermal conductivity, and different methods can be employed to improve the heat transfer rate. Cooling techniques based on phase change materials (PCMs) enhanced by nano-sized solid particles are very promising. In this paper, a mathematical model is developed to simulate the performance analysis of PV attached with nano-enhanced PCM (NEPCM) integrated with fins and compare the same with that of pure PCM case. The system is oriented in a horizontal position and subjected to constant solar radiation flux of 1000 W/m 2. The PCM selected is RT25HC, and the nanoparticle used is CuO for the numerical study. The effects of volumetric concentrations (0%, 2%, and 4%) and fin number on the performance of the system are investigated numerically. Results show that adding nanoparticles is more effective in no fin case compared to finned cases. The maximum reduction in average PV temperature of 2.02 °C is obtained for no fin case with the nanoparticles’ volumetric concentration of 4%. Further enhancement in liquid fraction and energy storage in NEPCM is also achieved compared to the pure PCM system.


2018 ◽  
Vol 4 (11) ◽  
pp. eaat8632 ◽  
Author(s):  
Shuai Wei ◽  
Zach Evenson ◽  
Moritz Stolpe ◽  
Pierre Lucas ◽  
C. Austen Angell

The dynamic properties of liquid phase-change materials (PCMs), such as viscosity η and the atomic self-diffusion coefficientD, play an essential role in the ultrafast phase switching behavior of novel nonvolatile phase-change memory applications. To connect η toD, the Stokes-Einstein relation (SER) is commonly assumed to be valid at high temperatures near or above the melting temperatureTmand is often used for assessing liquid fragility (or crystal growth velocity) of technologically important PCMs. However, using quasi-elastic neutron scattering, we provide experimental evidence for a breakdown of the SER even at temperatures aboveTmin the high–atomic mobility state of a PCM, Ge1Sb2Te4. This implies that although viscosity may have strongly increased during cooling, diffusivity can remain high owing to early decoupling, being a favorable feature for the fast phase switching behavior of the high-fluidity PCM. We discuss the origin of the observation and propose the possible connection to a metal-semiconductor and fragile-strong transition hidden belowTm.


Author(s):  
Yasmin Khakpour ◽  
Jamal Seyed-Yagoobi

This numerical study investigates the effect of using a blend of micro-encapsulated phase change materials (MEPCMs) on the heat transfer characteristics of a liquid in a rectangular enclosure driven by natural convection. A comparison has been made between the cases of using single component MEPCM slurry and a blend of two-component MEPCM slurry. The natural convection is generated by the temperature difference between two vertical walls of the enclosure maintained at constant temperatures. Each of the two phase change materials store latent heat at a specific range of temperatures. During phase change of the PCM, the effective density of the slurry varies. This results in thermal expansion and hence a buoyancy driven flow. The effects of MEPCM concentration in the slurry and changes in the operating conditions such as the wall temperatures compared to that of pure water have been studied. The MEPCM latent heat and the increased volumetric thermal expansion coefficient during phase change of the MEPCM play a major role in this heat transfer augmentation.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6176 ◽  
Author(s):  
Hamidreza Behi ◽  
Mohammadreza Behi ◽  
Ali Ghanbarpour ◽  
Danial Karimi ◽  
Aryan Azad ◽  
...  

Usage of phase change materials’ (PCMs) latent heat has been investigated as a promising method for thermal energy storage applications. However, one of the most common disadvantages of using latent heat thermal energy storage (LHTES) is the low thermal conductivity of PCMs. This issue affects the rate of energy storage (charging/discharging) in PCMs. Many researchers have proposed different methods to cope with this problem in thermal energy storage. In this paper, a tubular heat pipe as a super heat conductor to increase the charging/discharging rate was investigated. The temperature of PCM, liquid fraction observations, and charging and discharging rates are reported. Heat pipe effectiveness was defined and used to quantify the relative performance of heat pipe-assisted PCM storage systems. Both experimental and numerical investigations were performed to determine the efficiency of the system in thermal storage enhancement. The proposed system in the charging/discharging process significantly improved the energy transfer between a water bath and the PCM in the working temperature range of 50 °C to 70 °C.


Sign in / Sign up

Export Citation Format

Share Document