CaCO3 Particle-Filled Polymer Composite Manufacturing via RTM Process: An Experimental Investigation

2019 ◽  
Vol 391 ◽  
pp. 30-35
Author(s):  
Iran Rodrigues de Oliveira ◽  
José Vieira da Silva ◽  
E.M. Ascendino Pereira ◽  
Sandro Campos Amico ◽  
A.G. Barbosa de Lima ◽  
...  

Resin transfer molding (RTM) is one technique that has been used to produce polymer composites, which consists in injecting a thermoset pre-catalysed resin into a closed mold containing a dry fiber preform. In this sense, this study aims to investigate the effect of the calcium carbonate content (CaCO3) in the polyester resin during the RTM process. Several experiments were conducted using glass fiber mat molded in a RTM system with cavity dimensions 320 x 150 x 3.6 mm, at room temperature, and different injection pressure (0.75 bar) and CaCO3content (0, 10, 20, 30 and 40%). Results of the physical parameters such as viscosity, permeability, and mobility, and flow front position of the resin into the mold along the RTM process are presented and analyzed. From the results was concluded that the higher the injection pressure and lower CaCO3content into the resin, the lower filling time.

2014 ◽  
Vol 353 ◽  
pp. 67-72 ◽  
Author(s):  
B.G. Coutinho ◽  
V.M. França Bezerra ◽  
Severino Rodrigues de Farias Neto ◽  
Antônio Gilson Barbosa de Lima

RTM process is widely used for the production of high quality fiber reinforced composites parts. Computer simulations can play an important role in optimization of RTM processes by reducing risks and costs. In this paper, we present a two dimensional mathematical modelling for the mold filling stage in RTM process. It was used a two phase model (air-resin) which neglects the capillary and gravitational effects and considers all phases incompressible. The set of partial differential equations, expressed in boundary-fitted coordinates, are discretized by using the finite volume method and solved using a fully implicit methodology and the Newton's method. To validate the methodology, numerical and experimental data of the filling time and flow front position along the process are compared and good agreement was obtained.


2013 ◽  
Vol 334-335 ◽  
pp. 193-198 ◽  
Author(s):  
Iran Rodrigues de Oliveira ◽  
Sandro Campos Amico ◽  
Jeferson Avila Souza ◽  
F. Ferreira Luz ◽  
R. Barcella ◽  
...  

In the processing of high performance composite materials, the RTM process has been widely used by many sectors of the industry. This process consists in injecting a polymeric resin through a fibrous reinforcement arranged within a mold. In this sense, this study aims to simulate the rectilinear infiltration of pure resin and filled resin (40% CaCO3) in a mold with glass fiber preform, using the PAM-RTM commercial software. Numerical results of the filling time and fluid front flow position over time were assessed by comparison with the experimental data and a good accuracy was obtained.


2015 ◽  
Vol 365 ◽  
pp. 88-93 ◽  
Author(s):  
I.R. Oliveira ◽  
Sandro Campos Amico ◽  
J.A. Souza ◽  
Antônio Gilson Barbosa de Lima

This work aims to investigate the infiltration of a CaCO3filled resin in fibrous porous media (resin transfer molding process) using the PAM-RTM software. A preform of glass fiber mat (fraction 30%), with dimensions 320 x 150 x 3.6 mm, has been used in rectilinear injection experiments conducted at room temperature and injection pressure 0.25, 0.50 and 0.75 bar. The polyester resin contain 0% and 40% CaCO3. The numerical results were evaluated by direct comparison with experimental data. The flat flow-front profile of the rectilinear flow was reached approximately half length of the mold. It was observed, that the both velocity infiltration and permeability have decreased with increasing the CaCO3content, thus, increasing the time to processing of the composite material.


2014 ◽  
Vol 775-776 ◽  
pp. 308-313 ◽  
Author(s):  
Sergio Neves Monteiro ◽  
Frederico Muylaert Margem ◽  
Lucas Barboza de Souza Martins ◽  
Rômulo Leite Loiola ◽  
Michel Picanço Oliveira

Fibers of the giant bamboo (Dendrocalmus giganteus) are amongst the strongest lignocellulosic fibers. Although studies have been already performed, limited information exists on the mechanical properties of polymeric composites reinforced with continuous and aligned giant bamboo fibers. This work evaluates the tensile strength of this type of composite. Standard tensile specimens were fabricated with up to 30% of fibers aligned along the specimen length. The fibers were press-molded with a commercial polyester resin mixed with a hardener and cured for 24 hours at room temperature. The specimens were tensile tested in an Instron machine and the fracture surface analyzed by scanning electron microscopy. The tensile strength increased significantly with the amount of giant bamboo fiber reinforcing the composite. This performance can be associated with the difficult of rupture imposed by the fibers as well as with the type of cracks resulting from the bamboo fiber/polyester matrix interaction, which prevents rupture to occur.


2019 ◽  
Vol 111 ◽  
pp. 01073
Author(s):  
Alessandro Maccarini ◽  
Göran Hultmark ◽  
Niels C. Bergsøe ◽  
Alireza Afshari

This paper presents an investigation on the operation of a novel active beam system installed in an office building located in Jönköping, Sweden. The system consists of two parts: a dedicated outdoor air system (DOAS) to satisfy latent loads and ventilation requirements, and a water circuit to meet sensible heating and cooling loads. The novelty of the system is in relation to the water circuit, which is able to provide simultaneous heating and cooling through a single water loop that is near the room temperature. The energy performance of the system is currently being monitored through a number of sensors placed along the water circuit. Relevant physical parameters are being measured and data are available through a monitoring system. A preliminary analysis shows that the system is performing as designed. Results are shown for a typical week in winter, spring and summer. In particular, the supply water temperature in the circuit was between 20°C (in summer) and 23.2°C (in winter). The maximum supply/return temperature difference was found in summer and it assumed a value of 1.5 K. It is noticed that in spring supply and return water temperatures almost overlap.


2012 ◽  
Vol 11 (1-2) ◽  
pp. 93 ◽  
Author(s):  
J. Da S. Porto ◽  
M. Letzow ◽  
E. D. Dos Santos ◽  
S. C. Amico ◽  
J. A. Souza ◽  
...  

Light Resin Transfer Molding (LRTM) is a variation of the conventional manufacturing process known as Resin Transfer Molding (RTM). In general terms, these manufacturing processes consist of a closed mould with a preplaced fibrous preform through which a polymeric resin is injected, filling the mold completely, producing parts with complex geometries (in general) and good finish. Those processes differ, among other aspects, in the way that injection occurs. In the RTM process the resin is injected through discrete points whereas in LRTM it is injected into an empty channel (with no porous medium) which surrounds the entire mold perimeter. There are several numerical studies involving the RTM process but LRTM has not been explored enough by the scientific community. Based on that, this work proposes a numerical model developed in the FLUENT package to study the resin flow behavior in the LRTM process. Darcy’s law and Volume of Fluid method (VOF) are used to treat the interaction between air and resin during the flow in the porous medium, i.e. the mold filling problem. Moreover, two three-dimensional geometries were numerically simulated considering the RTM and LRTM processes. It was possible to note the huge differences about resin flow behavior and filling time between these processes to manufacture the same parts.


2014 ◽  
Vol 599-601 ◽  
pp. 18-21
Author(s):  
Shu Long Hu ◽  
Jian Lv ◽  
Feng Ying Lu ◽  
Hua Shan Liu ◽  
De Ming Zeng

In this paper, meso-porous MCM-41 was synthesized at room temperature using cationic surfactant cetyltrimethylammonium bromide (CTAB) as the template agent. Then MCM-41/unsatura-ted polyester resin (UPR) materials were prepared by in-situ polymerization with the meso-porous MCM-41. MCM-41/UPR in-situ composites were prepared by roller milling and molding processes. Effects of meso-porous MCM-41 on rheological properties and wear resistance of the MCM-41/UPR composites have been investigated. It is shown that MCM-41 has a diameter in range of 4-5 nm and the pores are highly ordered. MCM-41 can improve the rheological properties and wear resistance of the composites. When MCM-41 content is 2%, the mass abrasion loss is decreased by 37.4%.


2010 ◽  
Vol 168-170 ◽  
pp. 2315-2320
Author(s):  
Mei Yang ◽  
Qing Shen Zeng ◽  
Hong Yu Wang ◽  
Wei Xing Zhang

Resin transfer molding (RTM) is a very important category of low cost fibre reinforcement composite material manufacturing technique. But void which mainly formed at the process of filling and infiltration is able to reduce the performance of products. This paper first introduced how harmful the void is, and then formation theory, finally focus on the technical feature and resent evolution. Numerical simulation is always a mature and efficient research method for this field of investigation. Formerly, scientists also attribute their effort to such investigation, but, at that time, their simulation was 1D or 2D which can not represent the process accurately enough. Therefore the results are not so significant. Recently most studies pay attention to 3D simulation and how factors (such as injection pressure, structure of preform and so on) work. With the development of mathematic theory and simulation software some new numerical simulation methods present itself. Researchers may copy the course of resin’s filling in RTM more integrity to make their relation close to reality. Based on their achievement, the technique of RTM also improved to eliminate void’s emergence. However the real flow of resin is more than complex, more work should be done to avoid it and then set up a controllable industrial production system.


2014 ◽  
Vol 1061-1062 ◽  
pp. 465-470 ◽  
Author(s):  
Bin Xu ◽  
Zhi Yuan Rui

The gating system of an injection mold for car bumper was studied. A design optimization scheme is proposed to optimize both the number and locations of the gates by analyzing the filling process, in order to reduce the part war page and weld line, numerical simulation of injection mold filling process is combined with the design optimization method to find the optimum number of gates and their locations to achieve balanced f low and less weld lines while satisfying the limit of injection pressure. Moldflow software was applied to make analysis and comparison of various gating system in terms of their filling time, injection pressure and clamp force, weld line and distribution of air traps, and an optimized gating system was obtained. The result shows that this method can effectively reduce costs, shorten development cycle and improve the efficiency of molding design.


Sign in / Sign up

Export Citation Format

Share Document