Surface Texture Measurement with Profile Method Using Six-Axis Coordinate Measuring Machine

2021 ◽  
Vol 410 ◽  
pp. 872-877
Author(s):  
Andrey V. Kochetkov ◽  
Andrey A. Troshin ◽  
Oleg V. Zakharov

Currently the measurement of surface texture in mechanical engineering is traditionally carried out using profilometers. Modern profilometers do not allow measuring of surfaces with complex shapes. This is due to the different sensitivity of the sensor and the discreteness of the movements along the axes of the Cartesian coordinate system. Coordinate Measuring Machines are devoid of such a drawback. However, stylus of the coordinate measuring machine has a diameter many times larger than the diamond stylus of the profilometer. Therefore, there is a mechanical filtering effect, that affects the results of measuring the parameters of the surface texture. In this paper a mathematical model of the contact of the spherical stylus and a rough surface based on analytical geometry is proposed. Influence of the diameter of the spherical stylus on the maximum measurement errors of a amplitude parameters are investigated. Seven amplitude parameters Rp, Rv, Rz, Ra, Rq, Rsk, Rku of the surface texture are modeled. Coordinate measuring machine and profilometer with stylus diameter of 2 μm measurement results are compared. it was concluded that the stylus diameter of the coordinate measuring machine when measuring the surface texture should be no more than 20 μm.

2019 ◽  
Vol 9 (8) ◽  
pp. 1598 ◽  
Author(s):  
Fang ◽  
Huang ◽  
Xu ◽  
Cheng ◽  
Chen ◽  
...  

The probe tip of a micro-coordinate Measuring Machine (micro-CMM) is a microsphere with a diameter of hundreds of microns, and its sphericity is generally controlled within tens to hundreds of nanometers. However, the accurate measurement of the microsphere morphology is difficult because of the small size and high precision requirement. In this study, a measurement method with two scanning probes is proposed to obtain dimensions including the diameter and sphericity of microsphere. A series of maximum cross-sectional profiles of the microsphere in different angular directions are scanned simultaneously and differently by the scanning probes. By integrating the data of these maximum profiles, the dimensions of the microsphere can be calculated. The scanning probe is fabricated by combining a quartz tuning fork and a tungsten tip, which have a fine vertical resolution at a sub-nano scale. A commercial ruby microsphere is measured with the proposed method. Experiments that involve the scanning of six section profiles are carried out to estimate the dimensions of the ruby microsphere. The repeatability error of one section profile is 15.1 nm, which indicates that the measurement system has favorable repeatability. The mainly errors in the measurement are eliminated. The measured diameter and roundness are all consistent with the size standard of the commercial microsphere. The measurement uncertainty is evaluated, and the measurement results show that the method can be used to measure the dimensions of microspheres effectively.


2015 ◽  
Vol 4 (1) ◽  
pp. 125 ◽  
Author(s):  
Wilma Polini ◽  
Giovanni Moroni

Coordinate Measuring Machine (CMM) inspection planning is an activity performed by well-trained operators, but different measurement techniques, using the same data analysis algorithms yield in different measurement results. This is a well-recognized source of uncertainty in coordinate measurement. A CMM, provided with an automatic inspection planning (CAIP) system, permits to implement more accurate and efficient operating procedures and to fit higher quality assurance standards and tighter production timings.In this paper we present a frame of a CAIP system, able to deal with almost all the decisional stages of CMM inspection. Moreover, original approaches have been developed and presented in inspection feature selection, part set-up, probe configuration, and path planning.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Salah H. R. Ali

Quality of coordinate measuring machine (CMM) in dimension and form metrology is designed and performed at the NIS. The experimental investigation of CMM performance is developed by using reference Flick standard. The measurement errors of corresponding geometric evaluation algorithm (LSQ, ME, MC, and MI) and probe scanning speed (1, 2, 3, 4, and 5 mm/s) are obtained through repeated arrangement, comparison, and judgment. The experimental results show that the roundness error deviation can be evaluated effectively and exactly for CMM performance by using Flick standard. Some of influencing quantities for diameter and roundness form errors may dominate the results at all fitting algorithms under certain circumstances. It can be shown that the 2 mm/s probe speed gives smaller roundness error than 1, 3, 4, and 5 mm/s within 0.2 : 0.3 μm. It ensures that measurement at 2 mm/s is the best case to satisfy the high level of accuracy in the certain condition. Using Flick standard as a quality evaluation tool noted a high precision incremental in diameter and roundness form indication. This means a better transfer stability of CMM quality could be significantly improved. Moreover, some error formulae of data sets have been postulated to correlate the diameter and roundness measurements within the application range. Uncertainty resulting from CMM and environmental temperature has been evaluated and confirmed the quality degree of confidence in the proposed performance investigation.


Polimery ◽  
2021 ◽  
Vol 66 (1) ◽  
pp. 56-62
Author(s):  
Jadwiga Pisula

Properties of polymer gears were tested using coordinate measurement methods. This study is a follow-up to research on geometric accuracy of gears manufactured by injection molding. Spur gears were measured on a coordinate measuring machine running the GINA software by Klingelnberg. Measurement results were output in the form of measurement sheets which included values required in the DIN 3962 standard. The article also analyses the topography of test gear teeth. The topography was presented for a single tooth of the gear and determined on the basis of the measurements of 9 profiles distributed evenly over a specific profile assessment interval (interval Lα defined in the standard) and 7 tooth traces located within a relevant tooth trace assessment interval (interval Lβ defined in the standard). All gears tested in this study were placed outside accuracy class 12.


Author(s):  
Haitao Zhang ◽  
Shugui Liu ◽  
Xinghua Li

REVO five-axis system, designed for the orthogonal coordinate measuring machines, must be reconfigured for the application in the non-orthogonal coordinate measuring machines. First, in this article, error sources of the system and components of measurement data are analyzed; then, scale values of coordinate measuring machine axes, which are essential to derive the coordinates of measured points in non-orthogonal coordinate measuring machine, are separated out. Besides, the mathematical model of REVO is established based on the quasi-rigid body theory, from which the measurement results can be evaluated by data derived instead of that returned by the system. The effectiveness of both separation of scale values and mathematical model of REVO is proved by experiments and practice. The research of this article is of great significance to the application of REVO five-axis system in the non-orthogonal coordinate measuring machine.


2013 ◽  
Vol 561 ◽  
pp. 572-575
Author(s):  
Zhao Lin Han ◽  
Mao Xing Yuan

When we use Coordinate Measuring Machine to measure some points of the workpieces, the wrong measuring method will get the poor repeatability and poor reproducibility of measurement results. Now the vector measure of the CMM is a more convenient way. The main principles are analyzed in this paper, and a workpiece is measured for example.


2020 ◽  
pp. 20200001
Author(s):  
Zhenqi Zhao ◽  
Lizhe Xie ◽  
Dan Cao ◽  
Iman Izadikhah ◽  
Pengcheng Gao ◽  
...  

Objectives: This study was aimed to investigate the accuracy of soft-tissue measurements obtained by two imaging modalities, three-dimensional (3D) photogrammetry and cone beam CT (CBCT) when confounded by influence factors (facial deformities and partitions). Methods: 60 wax facial models from facially deformed patients were captured by 3D photogrammetry and CBCT. 19 linear distances on each image were measured and juxtaposed to reference values attained via a coordinate-measuring machine (CMM) as the gold-standard. Paired t-tests were used to compare linear accuracy of the test and reference systems. The influence of deformities and partitions (created by dividing the face with three vertical and five horizontal lines) on the measurement errors were analyzed by independent sample t-test and one-way ANOVA. Results: Statistically significant differences were found between linear accuracy of the test and reference systems. The test values obtained by 3D photogrammetry were closer to the reference values than CBCT’s. 3D photogrammetry’s measurement errors were significantly higher in deformed areas, unlike CBCT’s. Both systems reported significantly lower errors within partitions 8 and 13 compared to other partitions; for CBCT, aside from partitions 8 and 13, the differences in the errors for partitions 6 and 10 were significant compared to partitions 8, 12, 13, 14. Conclusion: 3D photogrammetry showed a higher linear accuracy than CBCT in patients with facial deformities due to protuberances. Facial reconstruction by both test modalities was significantly influenced in different facial partitions, but facial deformities extensively affected the results from 3D photogrammetry.


Author(s):  
Frank Ha¨rtig ◽  
Christian Keck ◽  
Karin Kniel ◽  
Heinrich Schwenke ◽  
Klaus Wendt ◽  
...  

The German national metrology institute, the Physikalisch-Technische Bundesanstalt (PTB), has developed a novel calibration method for gear artefacts. This reduces the current calibration uncertainty of gear standards, which is an essential step towards meeting the rising quality demands of the gear manufacturing industry. The measurement setup is based on a coordinate measuring machine (CMM) equipped with a high-precision rotary table. The key element of the novel gear measuring device is a tracking interferometer (TI) for reading the distance information. This information is combined with the reading of the coordinate measuring machine line scales in order to reduce the overall measurement uncertainty. If an optimized measurement strategy is applied, the measurement results are almost achieved with laser interferometer accuracy. First simulations and measurement results for an involute profile artefact are presented and discussed.


Author(s):  
Giovanni Moroni ◽  
Stefano Petro`

Uncertainty is a key concept in any environment which involves measurements to ensure process quality: a trade-off has to be found between measurement costs, which increase as uncertainty lowers, and costs related to measurement errors. In mechanics, geometrical conformance is a common requirement. Two similar standards series deal with the problem of uncertainty in geometrical error estimate: ASME B89.7.3 and ISO 14253. Geometrical inspection is often performed by means of a “Coordinate Measuring Machine” (CMM). For a CMM, a trade off between measurement and errors costs may be found by optimizing the sampling strategy. In this work a cost function will be proposed as support for finding a trade-off between measurement uncertainty and costs. This function may be optimized by means of an heuristic algorithm. The method will involve repeated measurements of calibrated parts to evaluate uncertainty (like in ISO/TS 15330-3). A case study will be proposed.


2020 ◽  
Vol 26 (2) ◽  
pp. 35-41
Author(s):  
Milan Simonović ◽  
Dragan Lazarević ◽  
Marko Simonović ◽  
Bogdan Nedić

The paper presents the results of measuring the gearbox housing with the ATOS optical measuring system, the TRITOP system and the "TESA micro-hit 4-5-4" coordinate measuring machine. The aim of the study was to determine the differences in modern measuring systems and whether these differences affect the final measurement result when controlling parts of a complex configuration. At the beginning of the paper, the way of functioning of the used measuring systems and the results of research in this area are described. GOM Inspect software used for the ATOS and TRITOP measuring systems, while PC DMIS software used for the coordinate measuring machine. The analysis of the obtained results showed that there are significant differences in the measurement results and that the measuring systems used can't be applied with the same success to the measurement of parts of complex configuration such as the gearbox housing.


Sign in / Sign up

Export Citation Format

Share Document