scholarly journals Single Step Growth of Vertically Oriented Zinc Oxide Nanowire Using Thermal Evaporation

2021 ◽  
Vol 411 ◽  
pp. 25-36
Author(s):  
Dzetty Soraya Abdul Aziz ◽  
Samsudi Sakrani ◽  
Naziha Jamaludin

Commonly, the synthesis of ZnO nanowires involves the use of metal catalyst via a non-direct step growth which contribute to the contamination on the final product. Thus, in this work we synthesized catalyst-free ZnO nanowires using a direct or single step growth of nanowires. Thermal evaporation method is used to synthesize ZnO nanowires on bare glass substrates with different distances between Zn powder and the substrates; on-top (1.2 cm), 16 cm and 18 cm. Field Emission Scanning Electron Microscopy images showed a vertically well-aligned with high density of ZnO nanowires were successfully synthesized via self-seeding process and the longest nanowires were produced at the shortest distance. Energy Dispersive X-ray and X-Ray Diffraction analyses confirmed that high purity of ZnO nanowires were obtained and ZnO (002) strongest and sharp peak was observed, indicating preferentially grown ZnO nanowires along the c-axis perpendicular to the substrates and leading towards single crystal structure. Four peaks were observed in visible range from Photoluminescence spectra (PL) which related to fundamental defects with the highest peak at 3.04 eV. The on-top sample with distance 1.2 cm from Zn powder has the lowest transmittance due to the high thickness of ZnO nanowires. The range of energy band gap for ZnO nanowires obtained from the extrapolation graph is in agreement with PL highest peak approximately 3.00 eV. Therefore, this direct or single step deposition method is of great interest since it has successfully produced ZnO nanowires with significant characteristics without employing the non-direct step growth.

2019 ◽  
Vol 15 (34) ◽  
pp. 1-14
Author(s):  
Bushra A. Hasan

Lead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is found to decrease with thickness increasing. The increase of thickness lead to reduce the polarizability α while the increasing of temperature lead to increase α.


2011 ◽  
Vol 2011 ◽  
pp. 1-6
Author(s):  
M. F. A. Alias ◽  
A. A. J. Al-Douri ◽  
E. M. N. Al-Fawadi ◽  
A. A. Alnajjar

Results of a study of alloys and films with various Pb content have been reported and discussed. Films of of thickness 1.5 μm have been deposited on glass substrates by flash thermal evaporation method at room temperature, under vacuum at constant deposition rate. These films were annealed under vacuum around 10−6Torr at different temperatures up to 523 K. The composition of the elements in alloys was determined by standard surfaces techniques such as atomic absorption spectroscopy (AAS) and X-ray fluorescence (XRF), and the results were found of high accuracy and in very good agreement with the theoretical values. The structure for alloys and films is determined by using X-ray diffraction. This measurement reveals that the structure is polycrystalline with cubic structure and there are strong peaks at the direction (200) and (111). The effect of heat treatment on the crystalline orientation, relative intensity, and grain size of films is presented.


2013 ◽  
Vol 756 ◽  
pp. 48-53
Author(s):  
Kar Keng Lim ◽  
Muhammad Azmi Abd Hamid ◽  
Roslinda Shamsudin ◽  
Azman Jalar ◽  
N.H. Al-Hardan

Grape-like tin dioxide (SnO2) structures have been grown onp-type silicon (Si(100)) substrate synthesized by thermal evaporation of tin (Sn) without use of metal catalyst. The experiment were conducted in a three-zone tube furnace at a constant temperature of 1080°C,under 1.6% of oxygen (O2) gas in an atmospheric ambient with a controlled flow rate of 1.0L/min. The prepared SnO2film was characterized by using X-ray diffraction diffractometer (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy(EDX) and photoluminescence (PL) measurement. The grape-like SnO2structures were highly crystalline with particle size (resemble grape fruit) ranging from 120-550 nm and diameter of wire (resemble grape stem) around 120-160 nm.The PL spectrum of the grape-like SnO2structures exhibits a broad visible light emission with a peak centered at around 623 nm, corresponding to 1.99 eV and usual near band edge emission of SnO2is not observed.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Peijie Lin ◽  
Sile Lin ◽  
Shuying Cheng ◽  
Jing Ma ◽  
Yunfeng Lai ◽  
...  

Ag-doped In2S3(In2S3:Ag) thin films have been deposited onto glass substrates by a thermal evaporation method. Ag concentration is varied from 0 at.% to 4.78 at.%. The structural, optical, and electrical properties are characterized using X-ray diffraction (XRD), spectrophotometer, and Hall measurement system, respectively. The XRD analysis confirms the existence of In2S3and AgIn5S8phases. With the increase of the Ag concentration, the band gap of the films is decreased gradually from 2.82 eV to 2.69 eV and the resistivity drastically is decreased from ~103to5.478×10-2 Ω·cm.


2019 ◽  
Vol 17 (41) ◽  
pp. 15-28
Author(s):  
Hussain. M. Selman

BixSb2-xTe3 alloys with different ratios of Bi (x=0, 0.1, 0.3, 0.5, and 2) have been prepared, Thin films of these alloys were prepared using thermal evaporation method under vacuum of 10-5 Torr on glass substrates at room temperature with different deposition rate (0.16, 0.5, 0.83) nm/sec for thickness (100, 300, 500) respectively. The X–ray diffraction measurements for BixSb2-xTe3 bulk and thin films indicate the polycrystalline structure with a strong intensity of peak of plane (015) preferred orientation with additional peaks, (0015) and (1010 ) reflections planes, which is meaning that all films present a very good texture along the (015) plane axis at different intensities for each thin film for different thickness. AFM measurements for the thin films of BixSb2-xTe3, show that the grain size and the average surface roughness decreases with increasing of the percentage Bi for different thickness.


2015 ◽  
Vol 772 ◽  
pp. 62-66 ◽  
Author(s):  
R. Steigmann ◽  
N. Iftimie ◽  
A. Savin

Zinc oxide nanostructured materials, such as films and nanoparticles, could provide a suitable platform for development of high performance biosensing material due to their unique fundamental material properties. This paper presents the characterization of ZnO thin film as biosensing material by metallic strip grating structure (MSG), for the real-time detection. In this work, high quality ZnO films were grown on ITO/glass substrates by vacuum thermal evaporation method. We characterized by X-ray diffraction (XRD) the film crystalline quality and by scanning electron microscopy (SEM) the film morphology.


2020 ◽  
Vol 34 (26) ◽  
pp. 2050231
Author(s):  
B. Abadllah ◽  
M. Kakhia ◽  
A. Obaide ◽  
W. Zetoun

ZnS nanowires films were grown on two different substrates silicon and glass, with PbS dopant at 5 wt.%, using thermal evaporation method. The silicon is single crystal (only Si), while the glass is as amorphous substrate (mainly SiO2). In the used substrates, the morphology was confirmed by Atomic Force Microscopy (AFM) as well as Scanning Electron Microscopy (SEM) images (cross-section and surface). High Resolution Transmission Electron Microscopy (HRTEM) has been used to confirm the ZnO nanowires for doped films (PbS:ZnS) in both silicon and glass substrates, with diameter less than 50 nm and the thickness was varied from 2000 nm to 3000 nm. The undoped film has dense structure and is thin with thickness of 200 nm. The growth of nanowires is not affected by the two substrate types (silicon and glass). The compositions of chemical films have been verified by energy dispersive X-ray spectroscopy (EDX), and it confirms that ZnS is the main compound. X-ray Diffraction (XRD) investigated the crystallographic properties with wurtzite structure. Optical properties (transparency and bandgap) were deduced from UltraViolet Visible (UV-Vis) spectra of ZnS films (PbS 0 and 5 wt.%) deposited on glass substrate. Raman, Photoluminescence (PL) and Fourier transform infrared (FTIR) techniques confirm ZnS composition and its nonstructural growth. Finally, a good agreement between the XRD, FTIR and HRTEM analyses was found.


1990 ◽  
Vol 202 ◽  
Author(s):  
L. H. Chou ◽  
M. C. Kuo

ABSTRACTThin Sb films have been prepared on glass substrates by rapid thermal evaporation. Films with thicknesses varied from 260 Å to 1300Å were used for the study. X-ray diffraction data showed that for films deposited at room substrate temperature, an almost random grain orientation was observed for films of 1300 Å thick and a tendency for preferred grain orientation was observed as films got thinner. For films of 260 Å thick, only two x-ray diffraction peaks--(003) and (006) were observed. After thermal annealing, secondary grains grew to show preferred orientation in all the films. This phenomenon was explained by surface-energy-driven secondary grain growth. This paper reports the effects of annealing time and film thickness on the secondary grain growth and the evolution of thin Sb film microstmctures. Transmission electron microscopy (TEM) and x-ray diffraction were used to characterize the films.


2020 ◽  
Vol 307 ◽  
pp. 64-69
Author(s):  
Naziha Jamaludin ◽  
Samsudi Sakrani ◽  
Kashif Tufail Chaudhary ◽  
Jalil Ali ◽  
Fairuz Diyana Ismail

The present article reports the growth mechanism of zinc oxide (ZnO) nanowires grown on silicon substrate pre-coated with ZnO buffer layer by thermal evaporation method. ZnO nanowires are grown for different growth time of 0, 30, 90 and 120 mins with controlled supply of Ar and O2 gas at 650 °C. The structural, morphological and crystallinity properties of ZnO nanowires are analyzed by field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, high resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). FESEM images infers that, the nanowires growth is driven by self-catalysed vapor-liquid-solid mechanism, where the buffer layer serve as nucleation site. EDX spectra show the uniform composition and purity of ZnO nanowires. A strong (002) peak is detected in XRD spectra which indicates that the preferred growth orientation of the nanowires is toward the c-axis with a hexagonal wurtzite structure. The HRTEM microscopic graphs confirm the growth of nanowire along the preferred [0001] axis. Based on the analysis of grown ZnO nanowires, the probable growth mechanism is schematically presented.


Sign in / Sign up

Export Citation Format

Share Document