Reusable Mn-Doped ZnS Magnetic Nanocomposite for Photodegradation of Textile Dyes

2015 ◽  
Vol 33 ◽  
pp. 72-82
Author(s):  
Van Cuong Nguyen ◽  
My Dung Luu Thi ◽  
Thi Oanh Nguyen

Magnetic nanoparticles of manganese doped ZnS has been synthesized with different molar ratios of manganese and zinc by co-precipitation method. Structure of the prepared nanocomposite was investigated using FT-IR, XRD, TEM and VSM. The most excellent photodegradation efficiency of Reactive Blue 198 (RB198) was observed with the molar ratio of Mn-doped ZnS/Fe3O4 and it was 1:1 in which molar percentage of Mn2+ was 9%. The experiments of dye degradation were carried out under visible light and UV radiation. Results shown that the degradation efficiency of RB198 was up to 100% at the concentration of 200 ppm for 10 minutes when the amount of catalyst was 0.2g/l. Additionally, the effect of various parameters including initial concentration, illumination time and pH to the photodegradation efficiency of dye was also carried out. More interestingly, the reusable experiments showed that the nanocomposited exhibited high photodegradation capacity after three cycles and can be recycled conveniently from water with the assist of an external magnet because of its exceptional properties.

2020 ◽  
Vol 81 (12) ◽  
pp. 2522-2532
Author(s):  
Zhongliang Shi ◽  
Yanmei Wang ◽  
Shuyu Sun ◽  
Cheng Zhang ◽  
Haibo Wang

Abstract Layered double hydroxides (LDH) with highly flexible and adjustable chemical composition and physical properties have attracted tremendous attention in recent years. A series of LDH with different M (Mg, Zn, Mn)-Fe molar ratios were synthesized by the double titration co-precipitation method. The effect of the factors, including M (Mg, Zn, Mn) : Fe molar ratio, pH, and M-Fe LDH dosage, on the ability of the prepared M-Fe LDH to remove cationic methylene blue (MB) dye from aqueous solution were investigated. Results indicated that the removal efficiency of MB (10 mg/L) was the best at the M (Mg, Zn, Mn): Fe molar ratio of 3:1 by using 2.0 g/L of M-Fe LDH at pH 6.0 under 298.15 K. Mg-Fe LDH had the highest removal performance (71.94 mg/g at 298.15 K) for MB compared to those of the Zn-Fe and Mn-Fe LDH. Zn-Fe LDH with the smallest activation energy resulted in the fastest adsorption rate of MB. The pseudo-second-order model and Langmuir adsorption isotherm were also successfully applied to fit the theory of M-Fe LDH for removal of MB.


2019 ◽  
Vol 59 (3) ◽  
pp. 260-271 ◽  
Author(s):  
Eddy Heraldy ◽  
Fitria Rahmawati ◽  
Dwi Ardiyanti ◽  
Ika Nurmawanti

The fabrication of Mg-Zn-Al Hydrotalcite (HT) was carried out by the co-precipitation method at various molar ratios. The Mg-Zn-Al HT compound at the optimum molar ratio was then calcined to determine the effect of calcination on the Pb2+ adsorption. The kinetics of the adsorption type was determined by applying pseudo first order and pseudo second order kinetics models. Meanwhile, to investigate the adsorption process, the Freundlich and Langmuir equations were applied to determine the adsorption isotherm. The results showed that the optimum Mg-Zn-Al HT was at a molar ratio of 3 : 1 : 1 with an adsorption efficiency of 73.16 %, while Mg-Zn-Al HT oxide increased the adsorption efficiency to 98.12 %. The optimum condition of Pb2+ removal using Mg-Zn-Al HT oxide was reached at pH 5 and a contact time of 30 minutes. The adsorption kinetics follows the pseudo second order kinetics model with a rate constant of 0.544 g/mg·min. The isotherm adsorption follows the Langmuir isotherm model with a maximum capacity of 3.916 mg/g and adsorption energy of 28.756 kJ/mol.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7391
Author(s):  
Jennifer Hogenbom ◽  
Mouaz Istanbouli ◽  
Nicoletta Faraone

Cyclodextrin inclusion complexes have been successfully used to encapsulate essential oils, improving their physicochemical properties and pharmacological effects. Besides being well-known for its effects on cats and other felines, catnip (Nepeta cataria) essential oil demonstrates repellency against blood-feeding pests such as mosquitoes. This study evaluates the tick repellency of catnip oil alone and encapsulated in β-cyclodextrin, prepared using the co-precipitation method at a 1:1 molar ratio. The physicochemical properties of this inclusion complex were characterized using GC-FID for encapsulation efficiency and yield and SPME/GC-MS for volatile emission. Qualitative assessment of complex formation was done by UV-Vis, FT-IR, 1H NMR, and SEM analyses. Catnip oil at 5% (v/v) demonstrated significant tick repellency over time, being comparable to DEET as used in commercial products. The prepared [catnip: β-CD] inclusion complex exerted significant tick repellency at lower concentration of the essential oil (equivalent of 1% v/v). The inclusion complex showed that the release of the active ingredient was consistent after 6 h, which could improve the effective repellent duration. These results demonstrated the effective tick repellent activity of catnip essential oil and the successful synthesis of the inclusion complex, suggesting that β-CDs are promising carriers to improve catnip oil properties and to expand its use in repellent formulations for tick management.


Author(s):  
Buyan-Ulzii Battulga ◽  
Tungalagtamir Bold ◽  
Enkhsaruul Byambajav

AbstractNi based catalysts supported on γ-Al2O3 that was unpromoted (Ni/γAl2O3) or promoted (Ni–Fe/γAl2O3, Ni–Co/γAl2O3, and Ni–Fe–Co/γAl2O3) were prepared using by the impregnation – co-precipitation method. Their catalytic performances for CO methanation were studied at 3 atm with a weight hourly space velocity (WHSV) of 3000 ml/g/h of syngas with a molar ratio of H2/CO = 3 and in the temperature range between 130 and 350 °C. All promoters could improve nickel distribution, and decreased its particle sizes. It was found that the Ni–Co/γAl2O3 catalyst showed the highest catalytic performance for CO methanation in a low temperature range (<250 °C). The temperatures for the 20% CO conversion over Ni–Co/γAl2O3, Ni–Fe/γAl2O3, Ni–Fe–Co/γAl2O3 and Ni/γAl2O3 catalysts were 205, 253, 263 and 270 °C, respectively. The improved catalyst distribution by the addition of cobalt promoter caused the formation of β type nickel species which had an appropriate interacting strength with alumina support in the Ni–Co/γAl2O3. Though an addition of iron promoter improved catalyst distribution, the methane selectivity was lowered due to acceleration of both CO methanation and WGS reaction with the Ni–Fe/γAl2O3. Moreover, it was found that there was no synergetic effect from the binary Fe–Co promotors in the Ni–Fe–Co/γAl2O3 on catalytic activity for CO methanation.


2015 ◽  
Vol 645-646 ◽  
pp. 1339-1344 ◽  
Author(s):  
Yan Ting Yin ◽  
Qing Hua Chen ◽  
Ting Ting Yan ◽  
Qing Hua Chen

The objective of this study was to develop a novel silica modified large-sized hydroxyapatite whiskers with improved properties for use in bone repair applications. Large-sized whiskers with a mean length of 250μm were obtained by a hydrothermal co-precipitation method at 150°C, 7.5Mpa in high-pressure reactor. Silica modified hydroxyapatite whiskers were prepared by dissolving TEOS in ethanol solution, then sintering with hydroxyapatite. The compositional and morphological properties of prepared whiskers were studied by means of x-ray diffraction (XRD), Fouier transform infrared (FT-IR), scanning electron microscopy (SEM). The results indicated the evidence of nanosilicon dioxide particles on the surface of HAP whiskers. The size of nanosilicon dioxide particles depends on dropping and stirring rate. Hence, this new type of silica modified large-sized hydroxyapatite whiskers is a valuable candidate for biomedical applications.Key words: hydroxyapatite, hydrothermal co-precipitation, surface modified, whiskers


Author(s):  
Ghazanfar Abbas ◽  
Rizwan Raza ◽  
Muhammad Ashraf Chaudhry ◽  
Bin Zhu

The entire world’s challenge is to find out the renewable energy sources due to rapid depletion of fossil fuels because of their high consumption. Solid Oxide Fuel Cells (SOFCs) are believed to be the best alternative source which converts chemical energy into electricity without combustion. Nanostructured study is required to develop highly ionic conductive electrolyte for SOFCs. In this work, the calcium doped ceria (Ce0.8Ca0.2O1.9) coated with 20% molar ratio of two alkali carbonates (CDC-M: MCO3, where M = Na and K) electrolyte was prepared by co-precipitation method in this study. Ni based electrode was used to fabricate the cell by dry pressing technique. The crystal structure and surface morphology was characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM). The particle size was calculated in the range of 10–20nm by Scherrer’s formula and compared with SEM and TEM results. The ionic conductivity was measured by using AC Electrochemical Impedance Spectroscopy (EIS) method. The activation energy was also evaluated. The performance of the cell was measured 0.567W/cm2 at temperature 550°C with hydrogen as a fuel.


2018 ◽  
Vol 281 ◽  
pp. 40-45
Author(s):  
Jie Guang Song ◽  
Lin Chen ◽  
Cai Liang Pang ◽  
Jia Zhang ◽  
Xian Zhong Wang ◽  
...  

YAG materials has a number of unique properties, the application is very extensive. In this paper, the superfine YAG powder materials were prepared by co-precipitation method and hydrothermal precipitation method. The influence of synthesis process on the morphology of the powder was investigated. The results showed that the precursor powder prepared via the co-precipitation method is mainly from amorphous to crystalline transition with the increasing calcination temperature, the precursor agglomeration is more serious, In the process of increasing the calcination temperature, the dispersibility of the roasted powder is greatly improved, which is favorable for the growth of the crystal grains, so that the particle size of the powder is gradually increased, the YAG precursor prepared by the co-precipitation method is transformed into YAG crystals, the phase transition occurs mainly between 900 and 1100°C. When the molar ratio of salt to alkali is Y3+: OH-=1: 8 via the hydrothermal reaction, the YAG particles with homogeneous morphology can be obtained. When the molar ratio of salt and alkali is increased continuously, the morphology of YAG particles is not obviously changed. The co-precipitation method is easy to control the particle size, the hydrothermal method is easy to control the particle morphology.


2013 ◽  
Vol 781-784 ◽  
pp. 239-242
Author(s):  
Lei Wang ◽  
Peng Xiao

In this paper, SiMgAl hydotalcite synthesis conditions were investigated using co-precipitation method, within a relatively stable pH environment of 8~9. Our research, analysis and discussion focused on the effects of major factors, such as material molar ratio ,silicon content and aged condition, on the structures of synthetic products. To achieve stable and accurate data, synthetic products were characterized by XRD and IR under the identical conditions. As shown in the results, it is suggested that the best Crystallization temperature is 70°C, molar ratio of Mg to Al is 3:1, and the best content of Silicon is 0.015mol/mol.


2013 ◽  
Vol 838-841 ◽  
pp. 2306-2309
Author(s):  
Guang Hua Wang ◽  
Kun Chen ◽  
Wen Bing Li ◽  
Dong Wan ◽  
Qin Hu ◽  
...  

Magnetic modified organobentonite (Fe3O4/CTAB–Bent) was synthesized by chemical co-precipitation method in which CTAB–Bent was firstly achieved via ion–exchange.The composite materials have been characterized by powder X–ray diffraction (XRD), Fourier transform infrared spectroscopy (FT–IR) and Scanning electron microscopy (SEM) . The results revealed that basal spacing of bentonite was increased through organic modification and the Fe3O4 particles synthesized which covering the surfaces of bentonite .Compared with natural bentonite, the adsorption capacity of Fe3O4/CTAB–Bent for Orange II was greatly enhanced and can be easily separated from the reaction medium by an external magnetic field after the treatment.


Sign in / Sign up

Export Citation Format

Share Document