Effect of Concentrated Sulfuric Acid-Etching on Apatite-Forming Ability of Alkaline-Treated Titanium

2005 ◽  
Vol 284-286 ◽  
pp. 525-530 ◽  
Author(s):  
Seiji Ban ◽  
Hiroshi Kono ◽  
Y. Iwaya ◽  
Akihiko Yuda ◽  
Yuichi Izumi

Concentrated H2SO4 acid was applied to pretreatment for the alkaline treatment of commercially pure titanium, and the effect of acid-etching on apatite-forming ability of alkaline-treated titanium in a simulated body fluid (SBF) was investigated. Characterization analysis revealed that the concentrated H2SO4 etching formed much amount of sodium titanate, resulting a large amount of formation of apatite in SBF. It is confirmed that the etching in concentrated H2SO4 enhance apatite-forming ability of alkaline-treated titanium.

2006 ◽  
Vol 309-311 ◽  
pp. 403-406 ◽  
Author(s):  
Motoharu Miyamoto ◽  
Hiroshi Kono ◽  
Akihiko Yuda ◽  
Hisanoro Goto ◽  
Miho Machigashira ◽  
...  

The effects of four surface modification (acid-etching, alkaline treatment, acid-etching /alkaline treatment, and sandblasting) of commercially pure titanium (cpTi) on the early cellular responses of osteoblast-like MC3T3-E1 cells were investigated. MTT assay was used to measure the levels of cell attachment to the different surface specimens after 1-, 2-, and 3-hr cell incubation. All data were submitted to two-way analysis of variance. Cell morphology was observed by scanning electron microscopy (SEM). Results showed that initial adhesion of osteoblast-like cells was independent on the surface of cpTi modified with different method.


10.30544/384 ◽  
2011 ◽  
Vol 17 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Hamid Reza Asgari Bidhendi ◽  
Majid Pouranvari

Titanium alloys and stainless steel 316L are still the most widely used biomaterials for implants despite emerging new materials for this application. There is still someambiguity in corrosion behavior of metals in simulated body fluid (SBF). This paper aims at investigating the corrosion behavior of commercially pure titanium (CP-Ti), Ti–6Al–4V and 316LVM stainless steel (316LVM) in SBF (Hank’s solution) at37 ºC using the cyclic polarization test. Corrosion behavior was described in terms of breakdown potential, the potential and rate ofcorrosion, localized corrosion resistance, andbreakdown repassivation. The effects of anodizing on CP-Ti samples and the passivation on the 316LVM were studied in detail. It was shown that CP-Ti exhibited superior corrosion properties compared to Ti–6Al–4V and 316LVM.


2014 ◽  
Vol 8 (1) ◽  
pp. 114-119 ◽  
Author(s):  
In-Sung Yeo

Screw-shaped endosseous implants that have a turned surface of commercially pure titanium have a disadvantage of requiring a long time for osseointegration while those implants have shown long-term clinical success in single and multiple restorations. Titanium implant surfaces have been modified in various ways to improve biocompatibility and accelerate osseointegration, which results in a shorter edentulous period for a patient. This article reviewed some important modified titanium surfaces, exploring the in vitro, in vivo and clinical results that numerous comparison studies reported. Several methods are widely used to modify the topography or chemistry of titanium surface, including blasting, acid etching, anodic oxidation, fluoride treatment, and calcium phosphate coating. Such modified surfaces demonstrate faster and stronger osseointegration than the turned commercially pure titanium surface. However, there have been many studies finding no significant differences in in vivo bone responses among the modified surfaces. Considering those in vivo results, physical properties like roughening by sandblasting and acid etching may be major contributors to favorable bone response in biological environments over chemical properties obtained from various modifications including fluoride treatment and calcium phosphate application. Recently, hydrophilic properties added to the roughened surfaces or some osteogenic peptides coated on the surfaces have shown higher biocompatibility and have induced faster osseointegration, compared to the existing modified surfaces. However, the long-term clinical studies about those innovative surfaces are still lacking.


Author(s):  
F Reshadi ◽  
S Khorasani ◽  
G Faraji

This study investigated the surface characteristics of ultrafine-grain commercially pure titanium (UFG CP-Ti) substrates produced by equal channel angular pressing (ECAP), compared with those of coarse-grain commercially pure titanium (CG CP-Ti) and Ti–6Al–4V (Ti-64) substrates. All Ti surfaces were sandblasted and acid-etched (SLA-treated) to produce micro-rough surfaces. Tensile and microhardness tests were carried out to measure the mechanical properties of fabricated samples. Then the surface characteristics of samples including contact angle measurements, surface morphology and in vitro cell response were evaluated after polishing, sandblasting and acid etching procedures. The results showed that after applying four passes of ECAP, the average grain size of microstructure decreased from 25 µm to 170 nm, while the ultimate tensile strength increased from 545 ± 24 MPa to 971 ± 38 MPa. Investigation of surface morphologies carried out by scanning electron microscopy indicated that ECAP-processed substrate exhibits nano-topography compared with CG CP-Ti and Ti-64 substrates after applying SLA process. In addition, the contact angle of SLA-treated CG CP-Ti and UFG CP-Ti substrates decreased from 68.3° to 9.5° and 51.9° to 7.4°, respectively, indicating a significant improvement of surface wettability. The morphologies of MG63 cells cultured on the developed surfaces proved the potential superior osteoblast cell compatibility of the micro-roughened surface made of UFG CP-Ti substrates over CG CP-Ti and Ti-64 substrates.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Mohsin Nazir ◽  
Ong Pei Ting ◽  
Tan See Yee ◽  
Saravanan Pushparajan ◽  
Dasan Swaminathan ◽  
...  

This study investigated the viability of coating commercially pure titanium (CPTi) surfaces, modified via sandblasting and acid etching, with hydroxyapatite (HA)/tricalcium phosphate coatings using a simulated body fluid (SBF) solution. The samples were immersed in SBF from 3 to 7 days. The morphology and the chemistry of the HA/tricalcium phosphate coating were then analysed. Prior to immersion in SBF, the samples were sandblasted and acid etched to mimic the morphology and roughness of commercially available dental implants. The SBF aided in the formation of crystalline HA/tricalcium phosphate coatings on all the samples. The coatings were uniform and had roughness values higher than the underlying substrate. The highest roughness values for the coatings on the surfaces were obtained at 7 days of immersion in SBF with averageSavalues of 2.9 ± 0.2 µm. The presence of HA/tricalcium phosphate on the surfaces was confirmed by the Scanning Electron Microscope (SEM), Energy Dispersive Spectrometer (EDS), the X-Ray Diffraction (XRD), and the Fourier Transform Infrared Spectrometer (FTIR) analysis. This study shows that it is possible to obtain an adequate and uniform hydroxyapatite coating on pure titanium substrates in a shorter period of time with characteristics that favour the ultimate goal of implants therapy, that is, osseointegration.


Sign in / Sign up

Export Citation Format

Share Document