Amorphous Calcium Phosphates (ACP): Formation and Stability

2005 ◽  
Vol 284-286 ◽  
pp. 7-10 ◽  
Author(s):  
Racquel Z. LeGeros ◽  
Dindo Q. Mijares ◽  
J. Park ◽  
X.-F. Chang ◽  
I. Khairoun ◽  
...  

Our earlier studies showed that several ions inhibit the crystal growth of apatite and promote the formation of amorphous calcium phosphates (ACP). These ions include: magnesium (Mg), zinc (Zn), stannous (Sn), ferrous (Fe), carbonate (CO3), pyrophosphate (P2O7). The purpose of this study was to investigate the effect of combination of these ions (e.g., Mg & CO3, Mg & P2O7, Mg & Zn, etc) on the formation and stability of ACP. ACP compounds containing the different ions were prepared at 25 and 37oC according to the method we previously described. Chemical stability was investigated by suspending the different ACP preparations in solutions with or without inhibitory ions. Thermal stability was determined by sintering the ACP at different temperatures. Dissolution properties were determined in acidic buffer. The ACP before and after chemical or thermal treatment were analyzed using X-ray diffraction, infrared spectroscopy, and thermogravimetry. Results showed synergistic effects of inhibitory ions on the formation of ACP. ACP materials, regardless of their composition, remained amorphous even after heat treatment at 400oC. Transformation of ACP to other calcium phosphate phases depended on the pH and on the solution composition.

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2714
Author(s):  
Min Zuo ◽  
Boda Ren ◽  
Zihan Xia ◽  
Wenwen Ma ◽  
Yidan Lv ◽  
...  

In this article, the modification effects on Al–Mg2Si before and after heat treatment were investigated with Ca, Sb, and (Ca + Sb). In comparison with single Ca or Sb, the samples with composition modifiers (Ca + Sb) had the optimal microstructure. The sample with a molar ratio for Ca-to-Sb of 1:1 obtained relatively higher properties, for which the Brinell hardness values before and after heat treatment were remarkably increased by 31.74% and 28.93% in comparison with bare alloy. According to differential scanning calorimetry analysis (DSC), it was found that the nucleation behavior of the primary Mg2Si phase could be significantly improved by using chemical modifiers. Some white particles were found to be embedded in the center of Mg2Si phases, which were deduced to be Ca5Sb3 through X-ray diffraction (XRD) and field-emission scanning electron microscope (FESEM) analyses. Furthermore, Ca5Sb3 articles possess a rather low mismatch degree with Mg2Si particles based on Phase Transformation Crystallography Lab software (PTCLab) calculation, meaning that the efficient nucleation capability of Ca5Sb3 for Mg2Si particles could be estimated.


1962 ◽  
Vol 6 ◽  
pp. 74-84
Author(s):  
John V. Gilfrich

AbstractX-ray diffraction studies were made on the Ti–Ni system around the stoichiometric composition of the intermetallic compound TiNi to clarify some confusion which has existed about the phase diagram in this region, and to explain some anomalies in the physical properties of this material. Wrought and cast samples were examined at room temperature both before and after heat treatment and at temperatures both above and below ambient. The compound TiNi does exist at room temperature. The phase purity of the particular sample was found to be greatly affected by such factors as minor variations in composition, heat treatment, and method of sample preparation. Some confirming metallographlc and physical property data will also be presented.


2012 ◽  
Vol 727-728 ◽  
pp. 873-878
Author(s):  
Cibele Melo Halmenschlager ◽  
Matias de Angelis Korb ◽  
Roberto Neagu ◽  
Carlos Pérez Bergmann ◽  
Célia de Fraga Malfatti

The development of solid oxide fuel cell with thin film concepts for an electrode supported design based on the yttria-stabilized zirconia has demonstrated favourable results due to its high chemistry stability in oxidization and environment reduction. The spray pyrolysis process was investigated in order to obtain dense thin films of YSZ on different substrates. The precursor solution was obtained by zirconium and yttrium salt dissolutions in a mixture of water and glycerine in several ratios to study the solvent influence. The substrate was initially heated at 600 °C and during the deposition it ranged from 260-350°C, finishing at a fast increase in temperature of 600°C. The heat treatment was carried out in four different temperatures: 700 °C, 750 °C, 800 °C, and 900 °. The precursors were characterized by thermal analysis. The microstructures of the films were studied using scanning electron microscopy and X-ray diffraction. The results obtained showed that the films obtained were crystalline before the heat treatment process and have shown ionic conductivity above 800°C.


2012 ◽  
Vol 329 ◽  
pp. 139-145
Author(s):  
S.A. Aly

A Vanadium Pentoxide Sample with a Film Thickness of 75 Nm Has Been Thermally Evaporated on Unheated Glass Substrate Using V2O5High Purity Powder. the Sample Was Subjected to a Subsequent Post-Deposition Annealing in Air at Different Temperatures for a Period of One Hour. the Optical Properties Were Studied by Transmittance and Reflectance Measurements. the Integrated Visible ,TVis, and Solar, TSol, Transmittance Were Calculated. the Spectral Behaviour of the Refractive Index as Well as the Absorption Coefficient before and after Post-Deposition Heat-Treatment Was Also Reported. X-Ray Diffraction Confirmed that the Film in the as-Deposited as Well as after Annealing up to 400 °C Is in the Amorphous State.


1999 ◽  
Vol 581 ◽  
Author(s):  
L. Bessais ◽  
C. Djega-Mariadassou

ABSTRACTMechanical alloying of ternary SmFe11−xCoxTi (x = 0, 0.5, 1, 1.5, 2) alloys was carried out under an Ar atmosphere. Milled samples were annealed for 30 min in a vacuum at different temperatures Ta from 650 °C to 1150 °C. The effects of heat treatment, on structure and magnetic property changes, have been investigated by means of x-ray diffraction using the Rietveld method, Mössbauer spectroscopy and differential sample magnetometer. Tetragonal ThMn12-type structure is observed for samples annealed at Ta > 900 °C. For 650<Ta<800 °C the TbCu7 type phase was identified as the major phase. Between these two regions a mixture of TbCu7 and ThMn12-type nanocrystalline phases is obtained with a maximum of the coercive field Hc (Hc > 5kOe). The Mössbauer spectra relative to the hexagonal phase show sextuplets broadened by the statistical occupancies of the iron sites. An enhancement of the magnetic properties results from the Co substitution.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 858
Author(s):  
Shenglin Liu ◽  
Yongsheng Zhu ◽  
Xinyue Lai ◽  
Xueping Zheng ◽  
Runnan Jia ◽  
...  

Fe-based amorphous/nanocrystalline coatings with smooth, compact interior structure and low porosity were fabricated via supersonic plasma spraying (SPS). The coatings showed outstanding corrosion resistance in a 3.5% NaCl solution at room temperature. In order to analyze the effect of annealing treatment on the microstructure, corrosion resistance and microhardness, the as-sprayed coating was annealed for 1 h under different temperatures such as 350, 450, 550 and 650 °C, respectively. The results showed that the number of oxides and cracks in the coatings presented an obvious increase with increasing annealing temperature, and the corrosion resistance of the coatings showed an obvious reduction. However, the microhardness of coatings showed an important increase. The microhardness of the coating could reach 1018 HV when the heat treatment temperature reached 650 °C. The X-ray diffraction (XRD) results showed that there appeared a number of crystalline phases in the coating when the heat treatment temperature was at 650 °C. The crystalline phases led to the increase of the microhardness.


2017 ◽  
Vol 36 (8) ◽  
pp. 855-861
Author(s):  
Yong Pan ◽  
Junwei Cui ◽  
Weixin Lei ◽  
Jie Zhou ◽  
Zengsheng Ma

AbstractEffects of heat treatment on the mechanical properties of Ni films on 430 stainless steel substrate were investigated. The Ni films were annealed at heat treatment temperatures ranging from 0 °C to 800 °C for 2 h. The surface morphology, composition, and texture orientation of Ni films were studied by scanning electron microscopy, energy dispersive spectrometry, and X-ray diffraction. The load–indentation depth curves of Ni films before and after heat treatment were measured by using nanoindentation method. In conjunction with finite element modeling and dimensional analysis, the stress–strain relationships of Ni films on 430 stainless steel substrate at different temperatures are successfully obtained by using a power-law hardening model.


2011 ◽  
Vol 189-193 ◽  
pp. 688-691 ◽  
Author(s):  
Wang Ping Wu ◽  
Zhao Feng Chen ◽  
Xin Lin

Iridium (Ir) could be taken as high temperature protective coating for the refractory metals. Ir coating was deposited on the surface of molybdenum (Mo) substrate by double glow plasma. Thermal stability of the coating was investigated at 1400°C for 90 min, while Ar gas was inputted to hold the vacuum pressure. The microstructure of the surface and interface of the Ir coating were observed by SEM and TEM. The phase transition of the coating was determined by X-ray diffraction. Many micropores and microbubbles appeared in the surface of the as-heat treated coating. The interfacial reaction between the Mo substrate and Ir coating occurred during heat treatment, and Ir21.5Mo8.5 phase was formed at 1400°C. The experimental results indicated that the integrity of the Ir coating was not degraded after heat treatment.


2015 ◽  
Vol 1087 ◽  
pp. 321-328 ◽  
Author(s):  
Fatin Afifah Ahmad Kuthi ◽  
Khairiah Haji Badri ◽  
Azlin Mohmad Azman

Crystallinity of oil palm fiber from empty fruit bunch (EFB) with and without tretaments was studied by analyzing the X-ray diffraction (XRD) pattern. In this paper, we focused on the effect of acid hydrolysis onto EFB on the crystallinity of the extracted cellulose. The reaction was carried out by soaking EFB in 1% (v/v) aqueous sulfuric acid (H2SO4) at different temperatures of 120, 130 and 140°C for 1 h. The XRD patterns significantly showed changes in the 2θ peaks before and after the treatment. These changes were described in term of polymorphs type present, reflection and allomorphs of the samples. XRD peak high and XRD deconvolution methods were used to calculate and compare the percentage of crystallinity of untreated EFB (UT-EFB) and acid hydrolyzed samples (AH-EFB). Based on the calculation, increment of about 1.3 times and 1.5 times were achieved by using WAXS and XRD deconvolution methods respectively. This is due to the removal of amorphous part contributed by lignin, hemicellulose and cellulose. Fourier Transform infrared (FTIR) spectra showed the presence of similar peaks in AH-EFB and commercial microcrystalline cellulose (C-MCC) at 1427, 1315, 895 and 1022 cm-1. The micrographic features showed the acid hydrolysis had successfully took place and separated the EFB microfibrils bundles.


2007 ◽  
Vol 130 ◽  
pp. 263-266 ◽  
Author(s):  
Joanna Pisarska ◽  
Tomasz Goryczka ◽  
Wojciech A. Pisarski

Selected oxyfluoroborate glasses have been investigated before and after heat treatment. Transparent glass-ceramics (TGC) were obtained during controlled crystallization (devitrification). X-ray diffraction studies confirmed that material was partially crystallized. Diffraction lines due to orthorhombic PbF2 phase were identified for heat-treated samples at various temperatures and times. Results were compared to that ones obtained for as-melted glass.


Sign in / Sign up

Export Citation Format

Share Document