Promoted Growth of Murine Hair Follicles by Controlled Release of Growth Factors from Biodegradable Hydrogel

2005 ◽  
Vol 288-289 ◽  
pp. 133-138
Author(s):  
Makoto Ozeki ◽  
Yasuhiko Tabata

This study is an investigation to evaluate how the controlled release of different growth factors affects the hair follicle growth of mice in the second anagen stage of hair cycle. For the controlled release of basic fibroblast growth factor (bFGF) and hepatocyte growth factor (HGF), they were incorporating into biodegradable gelatin hydrogels, while a biodegradable collagen hydrogel was used for incorporation of vascular endothelial growth factor (VEGF). After subcutaneous implantation of the different hydrogels incorporating each growth factor or injection of phosphate buffered saline (PBS) containing the same dose of growth factor into the back of mice, the hair follicle growth was evaluated photometrically and histologically based on four parameters: the skin color of reverse side of the implanted or injected site, the number of vessels newly formed, the area occupied by hair follicle tissue, and the hair length. The area in close proximity to the implanted site of hydrogels incorporating growth factor was still dark in color 10 days after application. The hydrogel incorporating any type of growth factor enabled the hair follicles to increase the size, leading significantly enhanced area occupied by hair follicles per unit area of tissue. Implantation of the hydrogels incorporating growth factor increased significantly the number of blood vessels newly formed. Moreover, the length of hair shaft was elongated by the hydrogel incorporating growth factor to a significantly higher extent than the corresponding growth factor. Neither empty gelatin nor collagen hydrogels affected the hair follicle growth. These results indicate that the hydrogel incorporating growth factor induced the anagen-preservable activity. We conclude that the controlled release enabled growth factors to positively act on the hair growth cycle of mice, irrespective of the factor type.

2014 ◽  
Vol 46 (3) ◽  
pp. 104-111 ◽  
Author(s):  
Bing Zhu ◽  
Teng Xu ◽  
Zhipeng Zhang ◽  
Na Ta ◽  
Xiaoyu Gao ◽  
...  

Dermal papilla is considered the control center of hair follicle growth and hair cycle. The secondary hair follicle (producing cashmere) growth cycle of the Cashmere goat ( Capra hircus) is circannual, and each growth phase can be easily distinguished by its long duration. To identify gene expression patterns and differences of the dermal papilla cell (DPC) between the anagen and telogen phases, we established two DPC lines: ana-DPCs (DPCs derived from the anagen secondary hair follicle) and tel-DPCs (DPCs derived from the telogen secondary hair follicle). Compared with the ana-DPCs, the tel-DPCs lost the capacity to form cell aggregates and showed lower cell proliferation rate. Transcriptome sequencing revealed that 825 genes were differentially expressed by at least threefold between the two DPC lines. These genes were significantly enriched in cell cycle control, cell division, and chromosome partitioning from the Eukaryotic Orthologous Groups of proteins (KOG) database and in cell cycle, cell adhesion molecules, cytokine-cytokine receptor interaction, and p53 signaling pathway from the Kyoto Encyclopedia of Gene and Genomes (KEGG) database. Enrichment analyses revealed that in the middle of the telogen the DPCs of secondary hair follicles (SHFs) seemed on the one hand to promote the degeneration of SHFs and cessation of cashmere growth, while on the other hand to resist self-apoptosis and prepare for the regeneration or revivification of fully functional dermal papillae. These findings provide a better understanding of hair follicle growth and will be useful for identification of novel molecules associated with the control of hair growth cycle.


2000 ◽  
pp. 83-94
Author(s):  
Ralf Paus ◽  
Sven Müller-Röver ◽  
Ian McKay

2001 ◽  
Vol 81 (1) ◽  
pp. 449-494 ◽  
Author(s):  
K. S. Stenn ◽  
R. Paus

Nearly 50 years ago, Chase published a review of hair cycling in which he detailed hair growth in the mouse and integrated hair biology with the biology of his day. In this review we have used Chase as our model and tried to put the adult hair follicle growth cycle in perspective. We have tried to sketch the adult hair follicle cycle, as we know it today and what needs to be known. Above all, we hope that this work will serve as an introduction to basic biologists who are looking for a defined biological system that illustrates many of the challenges of modern biology: cell differentiation, epithelial-mesenchymal interactions, stem cell biology, pattern formation, apoptosis, cell and organ growth cycles, and pigmentation. The most important theme in studying the cycling hair follicle is that the follicle is a regenerating system. By traversing the phases of the cycle (growth, regression, resting, shedding, then growth again), the follicle demonstrates the unusual ability to completely regenerate itself. The basis for this regeneration rests in the unique follicular epithelial and mesenchymal components and their interactions. Recently, some of the molecular signals making up these interactions have been defined. They involve gene families also found in other regenerating systems such as fibroblast growth factor, transforming growth factor-β, Wnt pathway, Sonic hedgehog, neurotrophins, and homeobox. For the immediate future, our challenge is to define the molecular basis for hair follicle growth control, to regenerate a mature hair follicle in vitro from defined populations, and to offer real solutions to our patients' problems.


2021 ◽  
Vol 12 ◽  
Author(s):  
Junyang Liu ◽  
Qing Mu ◽  
Zhihong Liu ◽  
Yan Wang ◽  
Jiasen Liu ◽  
...  

Secondary hair follicle growth in cashmere goats has seasonal cycle changes, and melatonin (MT) has a regulatory effect on the cashmere growth cycle. In this study, the growth length of cashmere was measured by implanting MT in live cashmere goats. The results indicated that the continuous implantation of MT promoted cashmere to enter the anagen 2 months earlier and induce secondary hair follicle development. HE staining of skin tissues showed that the number of secondary hair follicles in the MT-implanted goats was significantly higher than that in the control goats (P < 0.05). Transcriptome sequencing of the skin tissue of cashmere goats was used to identify differentially expressed genes: 532 in February, 641 in October, and 305 in December. Fluorescence quantitative PCR and Western blotting results showed that MT had a significant effect on the expression of Wnt10b, β-catenin, and proteins in the skin tissue of Inner Mongolia cashmere goats. This finding suggested that MT alters the cycle of secondary hair follicle development by changing the expression of related genes. This research lays the foundation for further study on the mechanism by which MT regulates cashmere growth.


2019 ◽  
Vol 20 (7) ◽  
pp. 1741 ◽  
Author(s):  
Sandra Fernández-Martos ◽  
María Calvo-Sánchez ◽  
Karla García-Alonso ◽  
Begoña Castro ◽  
Bita Hashtroody ◽  
...  

Glycosaminoglycans (GAGs) and associated proteoglycans have important functions in homeostatic maintenance and regenerative processes (e.g., wound repair) of the skin. However, little is known about the role of these molecules in the regulation of the hair follicle cycle. Here we report that growing human hair follicles ex vivo in a defined GAG hydrogel mimicking the dermal matrix strongly promotes sustained cell survival and maintenance of a highly proliferative phenotype in the hair bulb and suprabulbar regions. This significant effect is associated with the activation of WNT/β-catenin signaling targets (CCDN1, AXIN2) and with the expression of stem cell markers (CK15, CD34) and growth factors implicated in the telogen/anagen transition (TGFβ2, FGF10). As a whole, these results point to the dermal GAG matrix as an important component in the regulation of the human hair follicle growth cycle, and to GAG-based hydrogels as potentially relevant modulators of this process both in vitro and in vivo.


2016 ◽  
Vol 473 (19) ◽  
pp. 3291-3305 ◽  
Author(s):  
Linli Zhou ◽  
Kun Yang ◽  
April Carpenter ◽  
Richard A. Lang ◽  
Thomas Andl ◽  
...  

Active Wnt/β-catenin signaling in the dermal papilla (DP) is required for postnatal hair cycling. In addition, maintenance of the hair-inducing ability of DP cells in vitro requires external addition of Wnt molecules. However, whether DP cells are a critical source of Wnt ligands and induce both autocrine and paracrine signaling cascades to promote adult hair follicle growth and regeneration remains elusive. To address this question, we generated an animal model that allows inducible ablation of Wntless (Wls), a transmembrane Wnt exporter protein, in CD133-positive (CD133+) DP cells. CD133+ cells have been shown to be a specific subpopulation of cells in the DP, which possesses the hair-inducing capability. Here, we show that ablation of Wls expression in CD133+ DP cells results in a shortened period of postnatal hair growth. Mutant hair follicles were unable to enter full anagen (hair growth stage) and progressed toward a rapid regression. Notably, reduced size of the DP and decreased expression of anagen DP marker, versican, were observed in hair follicles when CD133+ DP cells lost Wls expression. Further analysis showed that Wls-deficient CD133+ DP cells led to reduced proliferation and differentiation in matrix keratinocytes and melanocytes that are needed for the generation of the hair follicle structure and a pigmented hair shaft. These findings clearly demonstrate that Wnt ligands produced by CD133+ DP cells play an important role in postnatal hair growth by maintaining the inductivity of DP cells and mediating the signaling cross-talk between the mesenchyme and the epithelial compartment.


2020 ◽  
Author(s):  
Alexandra K. Marr ◽  
Sabri Boughorbel ◽  
Aouatef I. Chouchane ◽  
Tomoshige Kino

AbstractImprinted genes play a critical role in the proliferation and differentiation of embryonic cells and somatic stem cells. They also participate in the development of a wide spectrum of clinical manifestations when they are dysregulated. In this study, we analyzed expression profiles of the network-forming 16 imprinted genes (imprinted gene network: IGN) in three phases of the hair follicle growth cycle by analyzing publicly available datasets deposited in the Gene Expression Omnibus (GEO). We found elevated expression of IGN genes including H19 in the telogen quiescent phase compared to the anagen proliferative and catagen regression phases in the transcriptomic dataset created from the mouse skin biopsy samples. Our findings suggest a novel role of the 16 IGN genes in the regulation of the hair follicle growth cycle, that manifests possibly through altering the transition between proliferation, quiescence and/or differentiation of the follicular stem cells.


Sign in / Sign up

Export Citation Format

Share Document